Home | Overview | Browser | Access | Login | Cookbook 
  VSA logo

Glossary of VSA attributes

This Glossary alphabetically lists all attributes used in the VSAv20150413 database(s) held in the VSA. If you would like to have more information about the schema tables please use the VSAv20150413 Schema Browser (other Browser versions).
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

O

NameSchema TableDatabaseDescriptionTypeLengthUnitDefault ValueUnified Content Descriptor
o1Eta vhsTilePawPrints VHSDR1 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Eta vhsTilePawPrints VHSDR2 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Eta vhsTilePawPrints VHSDR3 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Eta vhsTilePawPrints VHSv20120926 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Eta vhsTilePawPrints VHSv20130417 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Eta vhsTilePawPrints VHSv20140409 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Eta vhsTilePawPrints VHSv20150108 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Eta vhsTilePawTDOnly VHSDR1 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o1Eta vhsTilePawTDOnly VHSDR2 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o1Eta vhsTilePawTDOnly VHSDR3 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o1Eta vhsTilePawTDOnly VHSv20120926 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o1Eta vhsTilePawTDOnly VHSv20130417 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o1Eta vhsTilePawTDOnly VHSv20140409 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o1Eta vhsTilePawTDOnly VHSv20150108 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o1Eta videoTilePawPrints VIDEODR2 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Eta videoTilePawPrints VIDEODR3 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Eta videoTilePawPrints VIDEODR4 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Eta videoTilePawPrints VIDEOv20111208 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Eta videoTilePawTDOnly VIDEODR2 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o1Eta videoTilePawTDOnly VIDEODR3 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o1Eta videoTilePawTDOnly VIDEODR4 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o1Eta videoTilePawTDOnly VIDEOv20111208 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o1Eta vikingTilePawPrints VIKINGDR2 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Eta vikingTilePawPrints VIKINGDR3 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Eta vikingTilePawPrints VIKINGDR4 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Eta vikingTilePawPrints VIKINGv20110714 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Eta vikingTilePawPrints VIKINGv20111019 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Eta vikingTilePawPrints VIKINGv20130417 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Eta vikingTilePawPrints VIKINGv20140402 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Eta vikingTilePawPrints VIKINGv20150421 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Eta vikingTilePawTDOnly VIKINGDR2 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o1Eta vikingTilePawTDOnly VIKINGDR3 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o1Eta vikingTilePawTDOnly VIKINGDR4 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o1Eta vikingTilePawTDOnly VIKINGv20111019 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o1Eta vikingTilePawTDOnly VIKINGv20130417 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o1Eta vikingTilePawTDOnly VIKINGv20140402 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o1Eta vikingTilePawTDOnly VIKINGv20150421 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o1Eta vmcTilePawPrints VMCDR1 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Eta vmcTilePawPrints VMCDR2 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Eta vmcTilePawPrints VMCDR3 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Eta vmcTilePawPrints VMCv20110816 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Eta vmcTilePawPrints VMCv20110909 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Eta vmcTilePawPrints VMCv20120126 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Eta vmcTilePawPrints VMCv20121128 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Eta vmcTilePawPrints VMCv20130304 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Eta vmcTilePawPrints VMCv20130805 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Eta vmcTilePawPrints VMCv20140428 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Eta vmcTilePawPrints VMCv20140903 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Eta vmcTilePawPrints VMCv20150309 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Eta vmcTilePawTDOnly VMCDR1 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o1Eta vmcTilePawTDOnly VMCDR2 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o1Eta vmcTilePawTDOnly VMCDR3 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o1Eta vmcTilePawTDOnly VMCv20110816 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o1Eta vmcTilePawTDOnly VMCv20110909 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o1Eta vmcTilePawTDOnly VMCv20120126 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o1Eta vmcTilePawTDOnly VMCv20121128 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o1Eta vmcTilePawTDOnly VMCv20130304 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o1Eta vmcTilePawTDOnly VMCv20130805 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o1Eta vmcTilePawTDOnly VMCv20140428 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o1Eta vmcTilePawTDOnly VMCv20140903 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o1Eta vmcTilePawTDOnly VMCv20150309 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o1Eta vvvTilePawPrints VVVDR1 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Eta vvvTilePawPrints VVVDR2 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Eta vvvTilePawPrints VVVv20110718 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Eta vvvTilePawTDOnly VVVDR1 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o1Eta vvvTilePawTDOnly VVVDR2 Offset of O1 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o1ExtNum vhsTilePawPrints VHSDR2 the extension number of the O1 detection tinyint 1   2 meta.id
o1ExtNum vhsTilePawPrints VHSDR3 the extension number of the O1 detection tinyint 1   2 meta.id
o1ExtNum vhsTilePawPrints VHSv20120926 the extension number of the O1 detection tinyint 1   2 meta.id
o1ExtNum vhsTilePawPrints VHSv20130417 the extension number of the O1 detection tinyint 1   2 meta.id
o1ExtNum vhsTilePawPrints VHSv20140409 the extension number of the O1 detection tinyint 1   2 meta.id
o1ExtNum vhsTilePawPrints VHSv20150108 the extension number of the O1 detection tinyint 1   2 meta.id
o1ExtNum vhsTilePawPrints, vhsTilePawTDOnly VHSDR1 the extension number of the O1 detection tinyint 1   2 meta.id
o1ExtNum videoTilePawPrints VIDEODR3 the extension number of the O1 detection tinyint 1   2 meta.id
o1ExtNum videoTilePawPrints VIDEODR4 the extension number of the O1 detection tinyint 1   2 meta.id
o1ExtNum videoTilePawPrints VIDEOv20111208 the extension number of the O1 detection tinyint 1   2 meta.id
o1ExtNum videoTilePawPrints, videoTilePawTDOnly VIDEODR2 the extension number of the O1 detection tinyint 1   2 meta.id
o1ExtNum vikingTilePawPrints VIKINGDR3 the extension number of the O1 detection tinyint 1   2 meta.id
o1ExtNum vikingTilePawPrints VIKINGDR4 the extension number of the O1 detection tinyint 1   2 meta.id
o1ExtNum vikingTilePawPrints VIKINGv20110714 the extension number of the O1 detection int 4   -99999999 meta.id
o1ExtNum vikingTilePawPrints VIKINGv20111019 the extension number of the O1 detection tinyint 1   2 meta.id
o1ExtNum vikingTilePawPrints VIKINGv20130417 the extension number of the O1 detection tinyint 1   2 meta.id
o1ExtNum vikingTilePawPrints VIKINGv20140402 the extension number of the O1 detection tinyint 1   2 meta.id
o1ExtNum vikingTilePawPrints VIKINGv20150421 the extension number of the O1 detection tinyint 1   2 meta.id
o1ExtNum vikingTilePawPrints, vikingTilePawTDOnly VIKINGDR2 the extension number of the O1 detection tinyint 1   2 meta.id
o1ExtNum vmcTilePawPrints VMCDR2 the extension number of the O1 detection tinyint 1   2 meta.id
o1ExtNum vmcTilePawPrints VMCDR3 the extension number of the O1 detection tinyint 1   2 meta.id
o1ExtNum vmcTilePawPrints VMCv20110816 the extension number of the O1 detection tinyint 1   2 meta.id
o1ExtNum vmcTilePawPrints VMCv20110909 the extension number of the O1 detection tinyint 1   2 meta.id
o1ExtNum vmcTilePawPrints VMCv20120126 the extension number of the O1 detection tinyint 1   2 meta.id
o1ExtNum vmcTilePawPrints VMCv20121128 the extension number of the O1 detection tinyint 1   2 meta.id
o1ExtNum vmcTilePawPrints VMCv20130304 the extension number of the O1 detection tinyint 1   2 meta.id
o1ExtNum vmcTilePawPrints VMCv20130805 the extension number of the O1 detection tinyint 1   2 meta.id
o1ExtNum vmcTilePawPrints VMCv20140428 the extension number of the O1 detection tinyint 1   2 meta.id
o1ExtNum vmcTilePawPrints VMCv20140903 the extension number of the O1 detection tinyint 1   2 meta.id
o1ExtNum vmcTilePawPrints VMCv20150309 the extension number of the O1 detection tinyint 1   2 meta.id
o1ExtNum vmcTilePawPrints, vmcTilePawTDOnly VMCDR1 the extension number of the O1 detection tinyint 1   2 meta.id
o1ExtNum vvvTilePawPrints VVVDR2 the extension number of the O1 detection tinyint 1   2 meta.id
o1ExtNum vvvTilePawPrints VVVv20110718 the extension number of the O1 detection int 4   -99999999 meta.id
o1ExtNum vvvTilePawPrints, vvvTilePawTDOnly VVVDR1 the extension number of the O1 detection tinyint 1   2 meta.id
o1mfID vhsTileSet VHSDR1 the UID of the relevant offset O1 multiframe bigint 8     obs.field
o1mfID vhsTileSet VHSDR2 the UID of the relevant offset O1 multiframe bigint 8     obs.field
o1mfID vhsTileSet VHSDR3 the UID of the relevant offset O1 multiframe bigint 8     meta.id;obs.field
o1mfID vhsTileSet VHSv20120926 the UID of the relevant offset O1 multiframe bigint 8     meta.id;obs.field
o1mfID vhsTileSet VHSv20130417 the UID of the relevant offset O1 multiframe bigint 8     meta.id;obs.field
o1mfID vhsTileSet VHSv20140409 the UID of the relevant offset O1 multiframe bigint 8     meta.id;obs.field
o1mfID vhsTileSet VHSv20150108 the UID of the relevant offset O1 multiframe bigint 8     meta.id;obs.field
o1mfID videoTileSet VIDEODR2 the UID of the relevant offset O1 multiframe bigint 8     obs.field
o1mfID videoTileSet VIDEODR3 the UID of the relevant offset O1 multiframe bigint 8     meta.id;obs.field
o1mfID videoTileSet VIDEODR4 the UID of the relevant offset O1 multiframe bigint 8     meta.id;obs.field
o1mfID videoTileSet VIDEOv20111208 the UID of the relevant offset O1 multiframe bigint 8     obs.field
o1mfID vikingTileSet VIKINGDR2 the UID of the relevant offset O1 multiframe bigint 8     obs.field
o1mfID vikingTileSet VIKINGDR3 the UID of the relevant offset O1 multiframe bigint 8     meta.id;obs.field
o1mfID vikingTileSet VIKINGDR4 the UID of the relevant offset O1 multiframe bigint 8     meta.id;obs.field
o1mfID vikingTileSet VIKINGv20110714 the UID of the relevant offset O1 multiframe bigint 8     obs.field
o1mfID vikingTileSet VIKINGv20111019 the UID of the relevant offset O1 multiframe bigint 8     obs.field
o1mfID vikingTileSet VIKINGv20130417 the UID of the relevant offset O1 multiframe bigint 8     meta.id;obs.field
o1mfID vikingTileSet VIKINGv20140402 the UID of the relevant offset O1 multiframe bigint 8     meta.id;obs.field
o1mfID vikingTileSet VIKINGv20150421 the UID of the relevant offset O1 multiframe bigint 8     meta.id;obs.field
o1mfID vmcTileSet VMCDR1 the UID of the relevant offset O1 multiframe bigint 8     obs.field
o1mfID vmcTileSet VMCDR2 the UID of the relevant offset O1 multiframe bigint 8     meta.id;obs.field
o1mfID vmcTileSet VMCDR3 the UID of the relevant offset O1 multiframe bigint 8     meta.id;obs.field
o1mfID vmcTileSet VMCv20110816 the UID of the relevant offset O1 multiframe bigint 8     obs.field
o1mfID vmcTileSet VMCv20110909 the UID of the relevant offset O1 multiframe bigint 8     obs.field
o1mfID vmcTileSet VMCv20120126 the UID of the relevant offset O1 multiframe bigint 8     obs.field
o1mfID vmcTileSet VMCv20121128 the UID of the relevant offset O1 multiframe bigint 8     meta.id;obs.field
o1mfID vmcTileSet VMCv20130304 the UID of the relevant offset O1 multiframe bigint 8     meta.id;obs.field
o1mfID vmcTileSet VMCv20130805 the UID of the relevant offset O1 multiframe bigint 8     meta.id;obs.field
o1mfID vmcTileSet VMCv20140428 the UID of the relevant offset O1 multiframe bigint 8     meta.id;obs.field
o1mfID vmcTileSet VMCv20140903 the UID of the relevant offset O1 multiframe bigint 8     meta.id;obs.field
o1mfID vmcTileSet VMCv20150309 the UID of the relevant offset O1 multiframe bigint 8     meta.id;obs.field
o1mfID vvvTileSet VVVDR1 the UID of the relevant offset O1 multiframe bigint 8     meta.id;obs.field
o1mfID vvvTileSet VVVDR2 the UID of the relevant offset O1 multiframe bigint 8     meta.id;obs.field
o1mfID vvvTileSet VVVv20110718 the UID of the relevant offset O1 multiframe bigint 8     obs.field
o1SeqNum vhsTilePawPrints VHSDR2 the running number of the O1 detection int 4   -99999999 meta.id
o1SeqNum vhsTilePawPrints VHSDR3 the running number of the O1 detection int 4   -99999999 meta.number
o1SeqNum vhsTilePawPrints VHSv20120926 the running number of the O1 detection int 4   -99999999 meta.number
o1SeqNum vhsTilePawPrints VHSv20130417 the running number of the O1 detection int 4   -99999999 meta.number
o1SeqNum vhsTilePawPrints VHSv20140409 the running number of the O1 detection int 4   -99999999 meta.number
o1SeqNum vhsTilePawPrints VHSv20150108 the running number of the O1 detection int 4   -99999999 meta.number
o1SeqNum vhsTilePawPrints, vhsTilePawTDOnly VHSDR1 the running number of the O1 detection int 4   -99999999 meta.id
o1SeqNum videoTilePawPrints VIDEODR3 the running number of the O1 detection int 4   -99999999 meta.number
o1SeqNum videoTilePawPrints VIDEODR4 the running number of the O1 detection int 4   -99999999 meta.number
o1SeqNum videoTilePawPrints VIDEOv20111208 the running number of the O1 detection int 4   -99999999 meta.id
o1SeqNum videoTilePawPrints, videoTilePawTDOnly VIDEODR2 the running number of the O1 detection int 4   -99999999 meta.id
o1SeqNum vikingTilePawPrints VIKINGDR3 the running number of the O1 detection int 4   -99999999 meta.number
o1SeqNum vikingTilePawPrints VIKINGDR4 the running number of the O1 detection int 4   -99999999 meta.number
o1SeqNum vikingTilePawPrints VIKINGv20110714 the running number of the O1 detection int 4   -99999999 meta.id
o1SeqNum vikingTilePawPrints VIKINGv20111019 the running number of the O1 detection int 4   -99999999 meta.id
o1SeqNum vikingTilePawPrints VIKINGv20130417 the running number of the O1 detection int 4   -99999999 meta.number
o1SeqNum vikingTilePawPrints VIKINGv20140402 the running number of the O1 detection int 4   -99999999 meta.number
o1SeqNum vikingTilePawPrints VIKINGv20150421 the running number of the O1 detection int 4   -99999999 meta.number
o1SeqNum vikingTilePawPrints, vikingTilePawTDOnly VIKINGDR2 the running number of the O1 detection int 4   -99999999 meta.id
o1SeqNum vmcTilePawPrints VMCDR2 the running number of the O1 detection int 4   -99999999 meta.number
o1SeqNum vmcTilePawPrints VMCDR3 the running number of the O1 detection int 4   -99999999 meta.number
o1SeqNum vmcTilePawPrints VMCv20110816 the running number of the O1 detection int 4   -99999999 meta.id
o1SeqNum vmcTilePawPrints VMCv20110909 the running number of the O1 detection int 4   -99999999 meta.id
o1SeqNum vmcTilePawPrints VMCv20120126 the running number of the O1 detection int 4   -99999999 meta.id
o1SeqNum vmcTilePawPrints VMCv20121128 the running number of the O1 detection int 4   -99999999 meta.number
o1SeqNum vmcTilePawPrints VMCv20130304 the running number of the O1 detection int 4   -99999999 meta.number
o1SeqNum vmcTilePawPrints VMCv20130805 the running number of the O1 detection int 4   -99999999 meta.number
o1SeqNum vmcTilePawPrints VMCv20140428 the running number of the O1 detection int 4   -99999999 meta.number
o1SeqNum vmcTilePawPrints VMCv20140903 the running number of the O1 detection int 4   -99999999 meta.number
o1SeqNum vmcTilePawPrints VMCv20150309 the running number of the O1 detection int 4   -99999999 meta.number
o1SeqNum vmcTilePawPrints, vmcTilePawTDOnly VMCDR1 the running number of the O1 detection int 4   -99999999 meta.id
o1SeqNum vvvTilePawPrints VVVDR2 the running number of the O1 detection int 4   -99999999 meta.number
o1SeqNum vvvTilePawPrints VVVv20110718 the running number of the O1 detection int 4   -99999999 meta.id
o1SeqNum vvvTilePawPrints, vvvTilePawTDOnly VVVDR1 the running number of the O1 detection int 4   -99999999 meta.number
o1Xi vhsTilePawPrints VHSDR1 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Xi vhsTilePawPrints VHSDR2 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Xi vhsTilePawPrints VHSDR3 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Xi vhsTilePawPrints VHSv20120926 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Xi vhsTilePawPrints VHSv20130417 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Xi vhsTilePawPrints VHSv20140409 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Xi vhsTilePawPrints VHSv20150108 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Xi vhsTilePawTDOnly VHSDR1 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o1Xi vhsTilePawTDOnly VHSDR2 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o1Xi vhsTilePawTDOnly VHSDR3 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o1Xi vhsTilePawTDOnly VHSv20120926 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o1Xi vhsTilePawTDOnly VHSv20130417 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o1Xi vhsTilePawTDOnly VHSv20140409 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o1Xi vhsTilePawTDOnly VHSv20150108 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o1Xi videoTilePawPrints VIDEODR2 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Xi videoTilePawPrints VIDEODR3 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Xi videoTilePawPrints VIDEODR4 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Xi videoTilePawPrints VIDEOv20111208 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Xi videoTilePawTDOnly VIDEODR2 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o1Xi videoTilePawTDOnly VIDEODR3 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o1Xi videoTilePawTDOnly VIDEODR4 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o1Xi videoTilePawTDOnly VIDEOv20111208 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o1Xi vikingTilePawPrints VIKINGDR2 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Xi vikingTilePawPrints VIKINGDR3 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Xi vikingTilePawPrints VIKINGDR4 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Xi vikingTilePawPrints VIKINGv20110714 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Xi vikingTilePawPrints VIKINGv20111019 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Xi vikingTilePawPrints VIKINGv20130417 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Xi vikingTilePawPrints VIKINGv20140402 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Xi vikingTilePawPrints VIKINGv20150421 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Xi vikingTilePawTDOnly VIKINGDR2 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o1Xi vikingTilePawTDOnly VIKINGDR3 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o1Xi vikingTilePawTDOnly VIKINGDR4 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o1Xi vikingTilePawTDOnly VIKINGv20111019 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o1Xi vikingTilePawTDOnly VIKINGv20130417 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o1Xi vikingTilePawTDOnly VIKINGv20140402 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o1Xi vikingTilePawTDOnly VIKINGv20150421 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o1Xi vmcTilePawPrints VMCDR1 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Xi vmcTilePawPrints VMCDR2 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Xi vmcTilePawPrints VMCDR3 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Xi vmcTilePawPrints VMCv20110816 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Xi vmcTilePawPrints VMCv20110909 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Xi vmcTilePawPrints VMCv20120126 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Xi vmcTilePawPrints VMCv20121128 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Xi vmcTilePawPrints VMCv20130304 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Xi vmcTilePawPrints VMCv20130805 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Xi vmcTilePawPrints VMCv20140428 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Xi vmcTilePawPrints VMCv20140903 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Xi vmcTilePawPrints VMCv20150309 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Xi vmcTilePawTDOnly VMCDR1 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o1Xi vmcTilePawTDOnly VMCDR2 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o1Xi vmcTilePawTDOnly VMCDR3 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o1Xi vmcTilePawTDOnly VMCv20110816 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o1Xi vmcTilePawTDOnly VMCv20110909 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o1Xi vmcTilePawTDOnly VMCv20120126 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o1Xi vmcTilePawTDOnly VMCv20121128 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o1Xi vmcTilePawTDOnly VMCv20130304 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o1Xi vmcTilePawTDOnly VMCv20130805 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o1Xi vmcTilePawTDOnly VMCv20140428 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o1Xi vmcTilePawTDOnly VMCv20140903 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o1Xi vmcTilePawTDOnly VMCv20150309 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o1Xi vvvTilePawPrints VVVDR1 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Xi vvvTilePawPrints VVVDR2 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Xi vvvTilePawPrints VVVv20110718 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o1Xi vvvTilePawTDOnly VVVDR1 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o1Xi vvvTilePawTDOnly VVVDR2 Offset of O1 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o2Eta vhsTilePawPrints VHSDR1 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Eta vhsTilePawPrints VHSDR2 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Eta vhsTilePawPrints VHSDR3 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Eta vhsTilePawPrints VHSv20120926 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Eta vhsTilePawPrints VHSv20130417 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Eta vhsTilePawPrints VHSv20140409 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Eta vhsTilePawPrints VHSv20150108 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Eta vhsTilePawTDOnly VHSDR1 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o2Eta vhsTilePawTDOnly VHSDR2 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o2Eta vhsTilePawTDOnly VHSDR3 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o2Eta vhsTilePawTDOnly VHSv20120926 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o2Eta vhsTilePawTDOnly VHSv20130417 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o2Eta vhsTilePawTDOnly VHSv20140409 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o2Eta vhsTilePawTDOnly VHSv20150108 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o2Eta videoTilePawPrints VIDEODR2 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Eta videoTilePawPrints VIDEODR3 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Eta videoTilePawPrints VIDEODR4 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Eta videoTilePawPrints VIDEOv20111208 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Eta videoTilePawTDOnly VIDEODR2 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o2Eta videoTilePawTDOnly VIDEODR3 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o2Eta videoTilePawTDOnly VIDEODR4 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o2Eta videoTilePawTDOnly VIDEOv20111208 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o2Eta vikingTilePawPrints VIKINGDR2 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Eta vikingTilePawPrints VIKINGDR3 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Eta vikingTilePawPrints VIKINGDR4 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Eta vikingTilePawPrints VIKINGv20110714 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Eta vikingTilePawPrints VIKINGv20111019 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Eta vikingTilePawPrints VIKINGv20130417 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Eta vikingTilePawPrints VIKINGv20140402 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Eta vikingTilePawPrints VIKINGv20150421 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Eta vikingTilePawTDOnly VIKINGDR2 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o2Eta vikingTilePawTDOnly VIKINGDR3 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o2Eta vikingTilePawTDOnly VIKINGDR4 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o2Eta vikingTilePawTDOnly VIKINGv20111019 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o2Eta vikingTilePawTDOnly VIKINGv20130417 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o2Eta vikingTilePawTDOnly VIKINGv20140402 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o2Eta vikingTilePawTDOnly VIKINGv20150421 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o2Eta vmcTilePawPrints VMCDR1 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Eta vmcTilePawPrints VMCDR2 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Eta vmcTilePawPrints VMCDR3 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Eta vmcTilePawPrints VMCv20110816 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Eta vmcTilePawPrints VMCv20110909 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Eta vmcTilePawPrints VMCv20120126 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Eta vmcTilePawPrints VMCv20121128 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Eta vmcTilePawPrints VMCv20130304 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Eta vmcTilePawPrints VMCv20130805 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Eta vmcTilePawPrints VMCv20140428 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Eta vmcTilePawPrints VMCv20140903 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Eta vmcTilePawPrints VMCv20150309 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Eta vmcTilePawTDOnly VMCDR1 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o2Eta vmcTilePawTDOnly VMCDR2 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o2Eta vmcTilePawTDOnly VMCDR3 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o2Eta vmcTilePawTDOnly VMCv20110816 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o2Eta vmcTilePawTDOnly VMCv20110909 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o2Eta vmcTilePawTDOnly VMCv20120126 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o2Eta vmcTilePawTDOnly VMCv20121128 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o2Eta vmcTilePawTDOnly VMCv20130304 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o2Eta vmcTilePawTDOnly VMCv20130805 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o2Eta vmcTilePawTDOnly VMCv20140428 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o2Eta vmcTilePawTDOnly VMCv20140903 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o2Eta vmcTilePawTDOnly VMCv20150309 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o2Eta vvvTilePawPrints VVVDR1 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Eta vvvTilePawPrints VVVDR2 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Eta vvvTilePawPrints VVVv20110718 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Eta vvvTilePawTDOnly VVVDR1 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o2Eta vvvTilePawTDOnly VVVDR2 Offset of O2 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o2ExtNum vhsTilePawPrints VHSDR2 the extension number of the O2 detection tinyint 1   2 meta.id
o2ExtNum vhsTilePawPrints VHSDR3 the extension number of the O2 detection tinyint 1   2 meta.id
o2ExtNum vhsTilePawPrints VHSv20120926 the extension number of the O2 detection tinyint 1   2 meta.id
o2ExtNum vhsTilePawPrints VHSv20130417 the extension number of the O2 detection tinyint 1   2 meta.id
o2ExtNum vhsTilePawPrints VHSv20140409 the extension number of the O2 detection tinyint 1   2 meta.id
o2ExtNum vhsTilePawPrints VHSv20150108 the extension number of the O2 detection tinyint 1   2 meta.id
o2ExtNum vhsTilePawPrints, vhsTilePawTDOnly VHSDR1 the extension number of the O2 detection tinyint 1   2 meta.id
o2ExtNum videoTilePawPrints VIDEODR3 the extension number of the O2 detection tinyint 1   2 meta.id
o2ExtNum videoTilePawPrints VIDEODR4 the extension number of the O2 detection tinyint 1   2 meta.id
o2ExtNum videoTilePawPrints VIDEOv20111208 the extension number of the O2 detection tinyint 1   2 meta.id
o2ExtNum videoTilePawPrints, videoTilePawTDOnly VIDEODR2 the extension number of the O2 detection tinyint 1   2 meta.id
o2ExtNum vikingTilePawPrints VIKINGDR3 the extension number of the O2 detection tinyint 1   2 meta.id
o2ExtNum vikingTilePawPrints VIKINGDR4 the extension number of the O2 detection tinyint 1   2 meta.id
o2ExtNum vikingTilePawPrints VIKINGv20110714 the extension number of the O2 detection int 4   -99999999 meta.id
o2ExtNum vikingTilePawPrints VIKINGv20111019 the extension number of the O2 detection tinyint 1   2 meta.id
o2ExtNum vikingTilePawPrints VIKINGv20130417 the extension number of the O2 detection tinyint 1   2 meta.id
o2ExtNum vikingTilePawPrints VIKINGv20140402 the extension number of the O2 detection tinyint 1   2 meta.id
o2ExtNum vikingTilePawPrints VIKINGv20150421 the extension number of the O2 detection tinyint 1   2 meta.id
o2ExtNum vikingTilePawPrints, vikingTilePawTDOnly VIKINGDR2 the extension number of the O2 detection tinyint 1   2 meta.id
o2ExtNum vmcTilePawPrints VMCDR2 the extension number of the O2 detection tinyint 1   2 meta.id
o2ExtNum vmcTilePawPrints VMCDR3 the extension number of the O2 detection tinyint 1   2 meta.id
o2ExtNum vmcTilePawPrints VMCv20110816 the extension number of the O2 detection tinyint 1   2 meta.id
o2ExtNum vmcTilePawPrints VMCv20110909 the extension number of the O2 detection tinyint 1   2 meta.id
o2ExtNum vmcTilePawPrints VMCv20120126 the extension number of the O2 detection tinyint 1   2 meta.id
o2ExtNum vmcTilePawPrints VMCv20121128 the extension number of the O2 detection tinyint 1   2 meta.id
o2ExtNum vmcTilePawPrints VMCv20130304 the extension number of the O2 detection tinyint 1   2 meta.id
o2ExtNum vmcTilePawPrints VMCv20130805 the extension number of the O2 detection tinyint 1   2 meta.id
o2ExtNum vmcTilePawPrints VMCv20140428 the extension number of the O2 detection tinyint 1   2 meta.id
o2ExtNum vmcTilePawPrints VMCv20140903 the extension number of the O2 detection tinyint 1   2 meta.id
o2ExtNum vmcTilePawPrints VMCv20150309 the extension number of the O2 detection tinyint 1   2 meta.id
o2ExtNum vmcTilePawPrints, vmcTilePawTDOnly VMCDR1 the extension number of the O2 detection tinyint 1   2 meta.id
o2ExtNum vvvTilePawPrints VVVDR2 the extension number of the O2 detection tinyint 1   2 meta.id
o2ExtNum vvvTilePawPrints VVVv20110718 the extension number of the O2 detection int 4   -99999999 meta.id
o2ExtNum vvvTilePawPrints, vvvTilePawTDOnly VVVDR1 the extension number of the O2 detection tinyint 1   2 meta.id
o2mfID vhsTileSet VHSDR1 the UID of the relevant offset O2 multiframe bigint 8     obs.field
o2mfID vhsTileSet VHSDR2 the UID of the relevant offset O2 multiframe bigint 8     obs.field
o2mfID vhsTileSet VHSDR3 the UID of the relevant offset O2 multiframe bigint 8     meta.id;obs.field
o2mfID vhsTileSet VHSv20120926 the UID of the relevant offset O2 multiframe bigint 8     meta.id;obs.field
o2mfID vhsTileSet VHSv20130417 the UID of the relevant offset O2 multiframe bigint 8     meta.id;obs.field
o2mfID vhsTileSet VHSv20140409 the UID of the relevant offset O2 multiframe bigint 8     meta.id;obs.field
o2mfID vhsTileSet VHSv20150108 the UID of the relevant offset O2 multiframe bigint 8     meta.id;obs.field
o2mfID videoTileSet VIDEODR2 the UID of the relevant offset O2 multiframe bigint 8     obs.field
o2mfID videoTileSet VIDEODR3 the UID of the relevant offset O2 multiframe bigint 8     meta.id;obs.field
o2mfID videoTileSet VIDEODR4 the UID of the relevant offset O2 multiframe bigint 8     meta.id;obs.field
o2mfID videoTileSet VIDEOv20111208 the UID of the relevant offset O2 multiframe bigint 8     obs.field
o2mfID vikingTileSet VIKINGDR2 the UID of the relevant offset O2 multiframe bigint 8     obs.field
o2mfID vikingTileSet VIKINGDR3 the UID of the relevant offset O2 multiframe bigint 8     meta.id;obs.field
o2mfID vikingTileSet VIKINGDR4 the UID of the relevant offset O2 multiframe bigint 8     meta.id;obs.field
o2mfID vikingTileSet VIKINGv20110714 the UID of the relevant offset O2 multiframe bigint 8     obs.field
o2mfID vikingTileSet VIKINGv20111019 the UID of the relevant offset O2 multiframe bigint 8     obs.field
o2mfID vikingTileSet VIKINGv20130417 the UID of the relevant offset O2 multiframe bigint 8     meta.id;obs.field
o2mfID vikingTileSet VIKINGv20140402 the UID of the relevant offset O2 multiframe bigint 8     meta.id;obs.field
o2mfID vikingTileSet VIKINGv20150421 the UID of the relevant offset O2 multiframe bigint 8     meta.id;obs.field
o2mfID vmcTileSet VMCDR1 the UID of the relevant offset O2 multiframe bigint 8     obs.field
o2mfID vmcTileSet VMCDR2 the UID of the relevant offset O2 multiframe bigint 8     meta.id;obs.field
o2mfID vmcTileSet VMCDR3 the UID of the relevant offset O2 multiframe bigint 8     meta.id;obs.field
o2mfID vmcTileSet VMCv20110816 the UID of the relevant offset O2 multiframe bigint 8     obs.field
o2mfID vmcTileSet VMCv20110909 the UID of the relevant offset O2 multiframe bigint 8     obs.field
o2mfID vmcTileSet VMCv20120126 the UID of the relevant offset O2 multiframe bigint 8     obs.field
o2mfID vmcTileSet VMCv20121128 the UID of the relevant offset O2 multiframe bigint 8     meta.id;obs.field
o2mfID vmcTileSet VMCv20130304 the UID of the relevant offset O2 multiframe bigint 8     meta.id;obs.field
o2mfID vmcTileSet VMCv20130805 the UID of the relevant offset O2 multiframe bigint 8     meta.id;obs.field
o2mfID vmcTileSet VMCv20140428 the UID of the relevant offset O2 multiframe bigint 8     meta.id;obs.field
o2mfID vmcTileSet VMCv20140903 the UID of the relevant offset O2 multiframe bigint 8     meta.id;obs.field
o2mfID vmcTileSet VMCv20150309 the UID of the relevant offset O2 multiframe bigint 8     meta.id;obs.field
o2mfID vvvTileSet VVVDR1 the UID of the relevant offset O2 multiframe bigint 8     meta.id;obs.field
o2mfID vvvTileSet VVVDR2 the UID of the relevant offset O2 multiframe bigint 8     meta.id;obs.field
o2mfID vvvTileSet VVVv20110718 the UID of the relevant offset O2 multiframe bigint 8     obs.field
o2SeqNum vhsTilePawPrints VHSDR2 the running number of the O2 detection int 4   -99999999 meta.id
o2SeqNum vhsTilePawPrints VHSDR3 the running number of the O2 detection int 4   -99999999 meta.number
o2SeqNum vhsTilePawPrints VHSv20120926 the running number of the O2 detection int 4   -99999999 meta.number
o2SeqNum vhsTilePawPrints VHSv20130417 the running number of the O2 detection int 4   -99999999 meta.number
o2SeqNum vhsTilePawPrints VHSv20140409 the running number of the O2 detection int 4   -99999999 meta.number
o2SeqNum vhsTilePawPrints VHSv20150108 the running number of the O2 detection int 4   -99999999 meta.number
o2SeqNum vhsTilePawPrints, vhsTilePawTDOnly VHSDR1 the running number of the O2 detection int 4   -99999999 meta.id
o2SeqNum videoTilePawPrints VIDEODR3 the running number of the O2 detection int 4   -99999999 meta.number
o2SeqNum videoTilePawPrints VIDEODR4 the running number of the O2 detection int 4   -99999999 meta.number
o2SeqNum videoTilePawPrints VIDEOv20111208 the running number of the O2 detection int 4   -99999999 meta.id
o2SeqNum videoTilePawPrints, videoTilePawTDOnly VIDEODR2 the running number of the O2 detection int 4   -99999999 meta.id
o2SeqNum vikingTilePawPrints VIKINGDR3 the running number of the O2 detection int 4   -99999999 meta.number
o2SeqNum vikingTilePawPrints VIKINGDR4 the running number of the O2 detection int 4   -99999999 meta.number
o2SeqNum vikingTilePawPrints VIKINGv20110714 the running number of the O2 detection int 4   -99999999 meta.id
o2SeqNum vikingTilePawPrints VIKINGv20111019 the running number of the O2 detection int 4   -99999999 meta.id
o2SeqNum vikingTilePawPrints VIKINGv20130417 the running number of the O2 detection int 4   -99999999 meta.number
o2SeqNum vikingTilePawPrints VIKINGv20140402 the running number of the O2 detection int 4   -99999999 meta.number
o2SeqNum vikingTilePawPrints VIKINGv20150421 the running number of the O2 detection int 4   -99999999 meta.number
o2SeqNum vikingTilePawPrints, vikingTilePawTDOnly VIKINGDR2 the running number of the O2 detection int 4   -99999999 meta.id
o2SeqNum vmcTilePawPrints VMCDR2 the running number of the O2 detection int 4   -99999999 meta.number
o2SeqNum vmcTilePawPrints VMCDR3 the running number of the O2 detection int 4   -99999999 meta.number
o2SeqNum vmcTilePawPrints VMCv20110816 the running number of the O2 detection int 4   -99999999 meta.id
o2SeqNum vmcTilePawPrints VMCv20110909 the running number of the O2 detection int 4   -99999999 meta.id
o2SeqNum vmcTilePawPrints VMCv20120126 the running number of the O2 detection int 4   -99999999 meta.id
o2SeqNum vmcTilePawPrints VMCv20121128 the running number of the O2 detection int 4   -99999999 meta.number
o2SeqNum vmcTilePawPrints VMCv20130304 the running number of the O2 detection int 4   -99999999 meta.number
o2SeqNum vmcTilePawPrints VMCv20130805 the running number of the O2 detection int 4   -99999999 meta.number
o2SeqNum vmcTilePawPrints VMCv20140428 the running number of the O2 detection int 4   -99999999 meta.number
o2SeqNum vmcTilePawPrints VMCv20140903 the running number of the O2 detection int 4   -99999999 meta.number
o2SeqNum vmcTilePawPrints VMCv20150309 the running number of the O2 detection int 4   -99999999 meta.number
o2SeqNum vmcTilePawPrints, vmcTilePawTDOnly VMCDR1 the running number of the O2 detection int 4   -99999999 meta.id
o2SeqNum vvvTilePawPrints VVVDR2 the running number of the O2 detection int 4   -99999999 meta.number
o2SeqNum vvvTilePawPrints VVVv20110718 the running number of the O2 detection int 4   -99999999 meta.id
o2SeqNum vvvTilePawPrints, vvvTilePawTDOnly VVVDR1 the running number of the O2 detection int 4   -99999999 meta.number
o2Xi vhsTilePawPrints VHSDR1 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Xi vhsTilePawPrints VHSDR2 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Xi vhsTilePawPrints VHSDR3 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Xi vhsTilePawPrints VHSv20120926 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Xi vhsTilePawPrints VHSv20130417 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Xi vhsTilePawPrints VHSv20140409 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Xi vhsTilePawPrints VHSv20150108 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Xi vhsTilePawTDOnly VHSDR1 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o2Xi vhsTilePawTDOnly VHSDR2 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o2Xi vhsTilePawTDOnly VHSDR3 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o2Xi vhsTilePawTDOnly VHSv20120926 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o2Xi vhsTilePawTDOnly VHSv20130417 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o2Xi vhsTilePawTDOnly VHSv20140409 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o2Xi vhsTilePawTDOnly VHSv20150108 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o2Xi videoTilePawPrints VIDEODR2 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Xi videoTilePawPrints VIDEODR3 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Xi videoTilePawPrints VIDEODR4 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Xi videoTilePawPrints VIDEOv20111208 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Xi videoTilePawTDOnly VIDEODR2 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o2Xi videoTilePawTDOnly VIDEODR3 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o2Xi videoTilePawTDOnly VIDEODR4 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o2Xi videoTilePawTDOnly VIDEOv20111208 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o2Xi vikingTilePawPrints VIKINGDR2 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Xi vikingTilePawPrints VIKINGDR3 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Xi vikingTilePawPrints VIKINGDR4 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Xi vikingTilePawPrints VIKINGv20110714 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Xi vikingTilePawPrints VIKINGv20111019 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Xi vikingTilePawPrints VIKINGv20130417 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Xi vikingTilePawPrints VIKINGv20140402 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Xi vikingTilePawPrints VIKINGv20150421 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Xi vikingTilePawTDOnly VIKINGDR2 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o2Xi vikingTilePawTDOnly VIKINGDR3 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o2Xi vikingTilePawTDOnly VIKINGDR4 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o2Xi vikingTilePawTDOnly VIKINGv20111019 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o2Xi vikingTilePawTDOnly VIKINGv20130417 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o2Xi vikingTilePawTDOnly VIKINGv20140402 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o2Xi vikingTilePawTDOnly VIKINGv20150421 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o2Xi vmcTilePawPrints VMCDR1 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Xi vmcTilePawPrints VMCDR2 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Xi vmcTilePawPrints VMCDR3 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Xi vmcTilePawPrints VMCv20110816 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Xi vmcTilePawPrints VMCv20110909 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Xi vmcTilePawPrints VMCv20120126 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Xi vmcTilePawPrints VMCv20121128 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Xi vmcTilePawPrints VMCv20130304 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Xi vmcTilePawPrints VMCv20130805 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Xi vmcTilePawPrints VMCv20140428 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Xi vmcTilePawPrints VMCv20140903 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Xi vmcTilePawPrints VMCv20150309 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Xi vmcTilePawTDOnly VMCDR1 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o2Xi vmcTilePawTDOnly VMCDR2 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o2Xi vmcTilePawTDOnly VMCDR3 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o2Xi vmcTilePawTDOnly VMCv20110816 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o2Xi vmcTilePawTDOnly VMCv20110909 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o2Xi vmcTilePawTDOnly VMCv20120126 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o2Xi vmcTilePawTDOnly VMCv20121128 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o2Xi vmcTilePawTDOnly VMCv20130304 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o2Xi vmcTilePawTDOnly VMCv20130805 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o2Xi vmcTilePawTDOnly VMCv20140428 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o2Xi vmcTilePawTDOnly VMCv20140903 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o2Xi vmcTilePawTDOnly VMCv20150309 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o2Xi vvvTilePawPrints VVVDR1 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Xi vvvTilePawPrints VVVDR2 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Xi vvvTilePawPrints VVVv20110718 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o2Xi vvvTilePawTDOnly VVVDR1 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o2Xi vvvTilePawTDOnly VVVDR2 Offset of O2 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o3Eta vhsTilePawPrints VHSDR1 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Eta vhsTilePawPrints VHSDR2 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Eta vhsTilePawPrints VHSDR3 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Eta vhsTilePawPrints VHSv20120926 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Eta vhsTilePawPrints VHSv20130417 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Eta vhsTilePawPrints VHSv20140409 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Eta vhsTilePawPrints VHSv20150108 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Eta vhsTilePawTDOnly VHSDR1 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o3Eta vhsTilePawTDOnly VHSDR2 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o3Eta vhsTilePawTDOnly VHSDR3 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o3Eta vhsTilePawTDOnly VHSv20120926 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o3Eta vhsTilePawTDOnly VHSv20130417 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o3Eta vhsTilePawTDOnly VHSv20140409 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o3Eta vhsTilePawTDOnly VHSv20150108 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o3Eta videoTilePawPrints VIDEODR2 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Eta videoTilePawPrints VIDEODR3 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Eta videoTilePawPrints VIDEODR4 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Eta videoTilePawPrints VIDEOv20111208 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Eta videoTilePawTDOnly VIDEODR2 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o3Eta videoTilePawTDOnly VIDEODR3 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o3Eta videoTilePawTDOnly VIDEODR4 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o3Eta videoTilePawTDOnly VIDEOv20111208 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o3Eta vikingTilePawPrints VIKINGDR2 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Eta vikingTilePawPrints VIKINGDR3 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Eta vikingTilePawPrints VIKINGDR4 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Eta vikingTilePawPrints VIKINGv20110714 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Eta vikingTilePawPrints VIKINGv20111019 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Eta vikingTilePawPrints VIKINGv20130417 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Eta vikingTilePawPrints VIKINGv20140402 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Eta vikingTilePawPrints VIKINGv20150421 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Eta vikingTilePawTDOnly VIKINGDR2 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o3Eta vikingTilePawTDOnly VIKINGDR3 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o3Eta vikingTilePawTDOnly VIKINGDR4 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o3Eta vikingTilePawTDOnly VIKINGv20111019 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o3Eta vikingTilePawTDOnly VIKINGv20130417 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o3Eta vikingTilePawTDOnly VIKINGv20140402 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o3Eta vikingTilePawTDOnly VIKINGv20150421 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o3Eta vmcTilePawPrints VMCDR1 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Eta vmcTilePawPrints VMCDR2 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Eta vmcTilePawPrints VMCDR3 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Eta vmcTilePawPrints VMCv20110816 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Eta vmcTilePawPrints VMCv20110909 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Eta vmcTilePawPrints VMCv20120126 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Eta vmcTilePawPrints VMCv20121128 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Eta vmcTilePawPrints VMCv20130304 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Eta vmcTilePawPrints VMCv20130805 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Eta vmcTilePawPrints VMCv20140428 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Eta vmcTilePawPrints VMCv20140903 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Eta vmcTilePawPrints VMCv20150309 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Eta vmcTilePawTDOnly VMCDR1 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o3Eta vmcTilePawTDOnly VMCDR2 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o3Eta vmcTilePawTDOnly VMCDR3 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o3Eta vmcTilePawTDOnly VMCv20110816 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o3Eta vmcTilePawTDOnly VMCv20110909 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o3Eta vmcTilePawTDOnly VMCv20120126 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o3Eta vmcTilePawTDOnly VMCv20121128 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o3Eta vmcTilePawTDOnly VMCv20130304 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o3Eta vmcTilePawTDOnly VMCv20130805 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o3Eta vmcTilePawTDOnly VMCv20140428 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o3Eta vmcTilePawTDOnly VMCv20140903 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o3Eta vmcTilePawTDOnly VMCv20150309 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o3Eta vvvTilePawPrints VVVDR1 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Eta vvvTilePawPrints VVVDR2 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Eta vvvTilePawPrints VVVv20110718 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Eta vvvTilePawTDOnly VVVDR1 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o3Eta vvvTilePawTDOnly VVVDR2 Offset of O3 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o3ExtNum vhsTilePawPrints VHSDR2 the extension number of the O3 detection tinyint 1   2 meta.id
o3ExtNum vhsTilePawPrints VHSDR3 the extension number of the O3 detection tinyint 1   2 meta.id
o3ExtNum vhsTilePawPrints VHSv20120926 the extension number of the O3 detection tinyint 1   2 meta.id
o3ExtNum vhsTilePawPrints VHSv20130417 the extension number of the O3 detection tinyint 1   2 meta.id
o3ExtNum vhsTilePawPrints VHSv20140409 the extension number of the O3 detection tinyint 1   2 meta.id
o3ExtNum vhsTilePawPrints VHSv20150108 the extension number of the O3 detection tinyint 1   2 meta.id
o3ExtNum vhsTilePawPrints, vhsTilePawTDOnly VHSDR1 the extension number of the O3 detection tinyint 1   2 meta.id
o3ExtNum videoTilePawPrints VIDEODR3 the extension number of the O3 detection tinyint 1   2 meta.id
o3ExtNum videoTilePawPrints VIDEODR4 the extension number of the O3 detection tinyint 1   2 meta.id
o3ExtNum videoTilePawPrints VIDEOv20111208 the extension number of the O3 detection tinyint 1   2 meta.id
o3ExtNum videoTilePawPrints, videoTilePawTDOnly VIDEODR2 the extension number of the O3 detection tinyint 1   2 meta.id
o3ExtNum vikingTilePawPrints VIKINGDR3 the extension number of the O3 detection tinyint 1   2 meta.id
o3ExtNum vikingTilePawPrints VIKINGDR4 the extension number of the O3 detection tinyint 1   2 meta.id
o3ExtNum vikingTilePawPrints VIKINGv20110714 the extension number of the O3 detection int 4   -99999999 meta.id
o3ExtNum vikingTilePawPrints VIKINGv20111019 the extension number of the O3 detection tinyint 1   2 meta.id
o3ExtNum vikingTilePawPrints VIKINGv20130417 the extension number of the O3 detection tinyint 1   2 meta.id
o3ExtNum vikingTilePawPrints VIKINGv20140402 the extension number of the O3 detection tinyint 1   2 meta.id
o3ExtNum vikingTilePawPrints VIKINGv20150421 the extension number of the O3 detection tinyint 1   2 meta.id
o3ExtNum vikingTilePawPrints, vikingTilePawTDOnly VIKINGDR2 the extension number of the O3 detection tinyint 1   2 meta.id
o3ExtNum vmcTilePawPrints VMCDR2 the extension number of the O3 detection tinyint 1   2 meta.id
o3ExtNum vmcTilePawPrints VMCDR3 the extension number of the O3 detection tinyint 1   2 meta.id
o3ExtNum vmcTilePawPrints VMCv20110816 the extension number of the O3 detection tinyint 1   2 meta.id
o3ExtNum vmcTilePawPrints VMCv20110909 the extension number of the O3 detection tinyint 1   2 meta.id
o3ExtNum vmcTilePawPrints VMCv20120126 the extension number of the O3 detection tinyint 1   2 meta.id
o3ExtNum vmcTilePawPrints VMCv20121128 the extension number of the O3 detection tinyint 1   2 meta.id
o3ExtNum vmcTilePawPrints VMCv20130304 the extension number of the O3 detection tinyint 1   2 meta.id
o3ExtNum vmcTilePawPrints VMCv20130805 the extension number of the O3 detection tinyint 1   2 meta.id
o3ExtNum vmcTilePawPrints VMCv20140428 the extension number of the O3 detection tinyint 1   2 meta.id
o3ExtNum vmcTilePawPrints VMCv20140903 the extension number of the O3 detection tinyint 1   2 meta.id
o3ExtNum vmcTilePawPrints VMCv20150309 the extension number of the O3 detection tinyint 1   2 meta.id
o3ExtNum vmcTilePawPrints, vmcTilePawTDOnly VMCDR1 the extension number of the O3 detection tinyint 1   2 meta.id
o3ExtNum vvvTilePawPrints VVVDR2 the extension number of the O3 detection tinyint 1   2 meta.id
o3ExtNum vvvTilePawPrints VVVv20110718 the extension number of the O3 detection int 4   -99999999 meta.id
o3ExtNum vvvTilePawPrints, vvvTilePawTDOnly VVVDR1 the extension number of the O3 detection tinyint 1   2 meta.id
o3mfID vhsTileSet VHSDR1 the UID of the relevant offset O3 multiframe bigint 8     obs.field
o3mfID vhsTileSet VHSDR2 the UID of the relevant offset O3 multiframe bigint 8     obs.field
o3mfID vhsTileSet VHSDR3 the UID of the relevant offset O3 multiframe bigint 8     meta.id;obs.field
o3mfID vhsTileSet VHSv20120926 the UID of the relevant offset O3 multiframe bigint 8     meta.id;obs.field
o3mfID vhsTileSet VHSv20130417 the UID of the relevant offset O3 multiframe bigint 8     meta.id;obs.field
o3mfID vhsTileSet VHSv20140409 the UID of the relevant offset O3 multiframe bigint 8     meta.id;obs.field
o3mfID vhsTileSet VHSv20150108 the UID of the relevant offset O3 multiframe bigint 8     meta.id;obs.field
o3mfID videoTileSet VIDEODR2 the UID of the relevant offset O3 multiframe bigint 8     obs.field
o3mfID videoTileSet VIDEODR3 the UID of the relevant offset O3 multiframe bigint 8     meta.id;obs.field
o3mfID videoTileSet VIDEODR4 the UID of the relevant offset O3 multiframe bigint 8     meta.id;obs.field
o3mfID videoTileSet VIDEOv20111208 the UID of the relevant offset O3 multiframe bigint 8     obs.field
o3mfID vikingTileSet VIKINGDR2 the UID of the relevant offset O3 multiframe bigint 8     obs.field
o3mfID vikingTileSet VIKINGDR3 the UID of the relevant offset O3 multiframe bigint 8     meta.id;obs.field
o3mfID vikingTileSet VIKINGDR4 the UID of the relevant offset O3 multiframe bigint 8     meta.id;obs.field
o3mfID vikingTileSet VIKINGv20110714 the UID of the relevant offset O3 multiframe bigint 8     obs.field
o3mfID vikingTileSet VIKINGv20111019 the UID of the relevant offset O3 multiframe bigint 8     obs.field
o3mfID vikingTileSet VIKINGv20130417 the UID of the relevant offset O3 multiframe bigint 8     meta.id;obs.field
o3mfID vikingTileSet VIKINGv20140402 the UID of the relevant offset O3 multiframe bigint 8     meta.id;obs.field
o3mfID vikingTileSet VIKINGv20150421 the UID of the relevant offset O3 multiframe bigint 8     meta.id;obs.field
o3mfID vmcTileSet VMCDR1 the UID of the relevant offset O3 multiframe bigint 8     obs.field
o3mfID vmcTileSet VMCDR2 the UID of the relevant offset O3 multiframe bigint 8     meta.id;obs.field
o3mfID vmcTileSet VMCDR3 the UID of the relevant offset O3 multiframe bigint 8     meta.id;obs.field
o3mfID vmcTileSet VMCv20110816 the UID of the relevant offset O3 multiframe bigint 8     obs.field
o3mfID vmcTileSet VMCv20110909 the UID of the relevant offset O3 multiframe bigint 8     obs.field
o3mfID vmcTileSet VMCv20120126 the UID of the relevant offset O3 multiframe bigint 8     obs.field
o3mfID vmcTileSet VMCv20121128 the UID of the relevant offset O3 multiframe bigint 8     meta.id;obs.field
o3mfID vmcTileSet VMCv20130304 the UID of the relevant offset O3 multiframe bigint 8     meta.id;obs.field
o3mfID vmcTileSet VMCv20130805 the UID of the relevant offset O3 multiframe bigint 8     meta.id;obs.field
o3mfID vmcTileSet VMCv20140428 the UID of the relevant offset O3 multiframe bigint 8     meta.id;obs.field
o3mfID vmcTileSet VMCv20140903 the UID of the relevant offset O3 multiframe bigint 8     meta.id;obs.field
o3mfID vmcTileSet VMCv20150309 the UID of the relevant offset O3 multiframe bigint 8     meta.id;obs.field
o3mfID vvvTileSet VVVDR1 the UID of the relevant offset O3 multiframe bigint 8     meta.id;obs.field
o3mfID vvvTileSet VVVDR2 the UID of the relevant offset O3 multiframe bigint 8     meta.id;obs.field
o3mfID vvvTileSet VVVv20110718 the UID of the relevant offset O3 multiframe bigint 8     obs.field
o3SeqNum vhsTilePawPrints VHSDR2 the running number of the O3 detection int 4   -99999999 meta.id
o3SeqNum vhsTilePawPrints VHSDR3 the running number of the O3 detection int 4   -99999999 meta.number
o3SeqNum vhsTilePawPrints VHSv20120926 the running number of the O3 detection int 4   -99999999 meta.number
o3SeqNum vhsTilePawPrints VHSv20130417 the running number of the O3 detection int 4   -99999999 meta.number
o3SeqNum vhsTilePawPrints VHSv20140409 the running number of the O3 detection int 4   -99999999 meta.number
o3SeqNum vhsTilePawPrints VHSv20150108 the running number of the O3 detection int 4   -99999999 meta.number
o3SeqNum vhsTilePawPrints, vhsTilePawTDOnly VHSDR1 the running number of the O3 detection int 4   -99999999 meta.id
o3SeqNum videoTilePawPrints VIDEODR3 the running number of the O3 detection int 4   -99999999 meta.number
o3SeqNum videoTilePawPrints VIDEODR4 the running number of the O3 detection int 4   -99999999 meta.number
o3SeqNum videoTilePawPrints VIDEOv20111208 the running number of the O3 detection int 4   -99999999 meta.id
o3SeqNum videoTilePawPrints, videoTilePawTDOnly VIDEODR2 the running number of the O3 detection int 4   -99999999 meta.id
o3SeqNum vikingTilePawPrints VIKINGDR3 the running number of the O3 detection int 4   -99999999 meta.number
o3SeqNum vikingTilePawPrints VIKINGDR4 the running number of the O3 detection int 4   -99999999 meta.number
o3SeqNum vikingTilePawPrints VIKINGv20110714 the running number of the O3 detection int 4   -99999999 meta.id
o3SeqNum vikingTilePawPrints VIKINGv20111019 the running number of the O3 detection int 4   -99999999 meta.id
o3SeqNum vikingTilePawPrints VIKINGv20130417 the running number of the O3 detection int 4   -99999999 meta.number
o3SeqNum vikingTilePawPrints VIKINGv20140402 the running number of the O3 detection int 4   -99999999 meta.number
o3SeqNum vikingTilePawPrints VIKINGv20150421 the running number of the O3 detection int 4   -99999999 meta.number
o3SeqNum vikingTilePawPrints, vikingTilePawTDOnly VIKINGDR2 the running number of the O3 detection int 4   -99999999 meta.id
o3SeqNum vmcTilePawPrints VMCDR2 the running number of the O3 detection int 4   -99999999 meta.number
o3SeqNum vmcTilePawPrints VMCDR3 the running number of the O3 detection int 4   -99999999 meta.number
o3SeqNum vmcTilePawPrints VMCv20110816 the running number of the O3 detection int 4   -99999999 meta.id
o3SeqNum vmcTilePawPrints VMCv20110909 the running number of the O3 detection int 4   -99999999 meta.id
o3SeqNum vmcTilePawPrints VMCv20120126 the running number of the O3 detection int 4   -99999999 meta.id
o3SeqNum vmcTilePawPrints VMCv20121128 the running number of the O3 detection int 4   -99999999 meta.number
o3SeqNum vmcTilePawPrints VMCv20130304 the running number of the O3 detection int 4   -99999999 meta.number
o3SeqNum vmcTilePawPrints VMCv20130805 the running number of the O3 detection int 4   -99999999 meta.number
o3SeqNum vmcTilePawPrints VMCv20140428 the running number of the O3 detection int 4   -99999999 meta.number
o3SeqNum vmcTilePawPrints VMCv20140903 the running number of the O3 detection int 4   -99999999 meta.number
o3SeqNum vmcTilePawPrints VMCv20150309 the running number of the O3 detection int 4   -99999999 meta.number
o3SeqNum vmcTilePawPrints, vmcTilePawTDOnly VMCDR1 the running number of the O3 detection int 4   -99999999 meta.id
o3SeqNum vvvTilePawPrints VVVDR2 the running number of the O3 detection int 4   -99999999 meta.number
o3SeqNum vvvTilePawPrints VVVv20110718 the running number of the O3 detection int 4   -99999999 meta.id
o3SeqNum vvvTilePawPrints, vvvTilePawTDOnly VVVDR1 the running number of the O3 detection int 4   -99999999 meta.number
o3Xi vhsTilePawPrints VHSDR1 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Xi vhsTilePawPrints VHSDR2 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Xi vhsTilePawPrints VHSDR3 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Xi vhsTilePawPrints VHSv20120926 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Xi vhsTilePawPrints VHSv20130417 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Xi vhsTilePawPrints VHSv20140409 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Xi vhsTilePawPrints VHSv20150108 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Xi vhsTilePawTDOnly VHSDR1 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o3Xi vhsTilePawTDOnly VHSDR2 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o3Xi vhsTilePawTDOnly VHSDR3 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o3Xi vhsTilePawTDOnly VHSv20120926 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o3Xi vhsTilePawTDOnly VHSv20130417 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o3Xi vhsTilePawTDOnly VHSv20140409 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o3Xi vhsTilePawTDOnly VHSv20150108 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o3Xi videoTilePawPrints VIDEODR2 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Xi videoTilePawPrints VIDEODR3 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Xi videoTilePawPrints VIDEODR4 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Xi videoTilePawPrints VIDEOv20111208 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Xi videoTilePawTDOnly VIDEODR2 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o3Xi videoTilePawTDOnly VIDEODR3 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o3Xi videoTilePawTDOnly VIDEODR4 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o3Xi videoTilePawTDOnly VIDEOv20111208 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o3Xi vikingTilePawPrints VIKINGDR2 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Xi vikingTilePawPrints VIKINGDR3 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Xi vikingTilePawPrints VIKINGDR4 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Xi vikingTilePawPrints VIKINGv20110714 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Xi vikingTilePawPrints VIKINGv20111019 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Xi vikingTilePawPrints VIKINGv20130417 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Xi vikingTilePawPrints VIKINGv20140402 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Xi vikingTilePawPrints VIKINGv20150421 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Xi vikingTilePawTDOnly VIKINGDR2 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o3Xi vikingTilePawTDOnly VIKINGDR3 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o3Xi vikingTilePawTDOnly VIKINGDR4 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o3Xi vikingTilePawTDOnly VIKINGv20111019 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o3Xi vikingTilePawTDOnly VIKINGv20130417 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o3Xi vikingTilePawTDOnly VIKINGv20140402 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o3Xi vikingTilePawTDOnly VIKINGv20150421 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o3Xi vmcTilePawPrints VMCDR1 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Xi vmcTilePawPrints VMCDR2 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Xi vmcTilePawPrints VMCDR3 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Xi vmcTilePawPrints VMCv20110816 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Xi vmcTilePawPrints VMCv20110909 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Xi vmcTilePawPrints VMCv20120126 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Xi vmcTilePawPrints VMCv20121128 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Xi vmcTilePawPrints VMCv20130304 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Xi vmcTilePawPrints VMCv20130805 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Xi vmcTilePawPrints VMCv20140428 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Xi vmcTilePawPrints VMCv20140903 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Xi vmcTilePawPrints VMCv20150309 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Xi vmcTilePawTDOnly VMCDR1 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o3Xi vmcTilePawTDOnly VMCDR2 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o3Xi vmcTilePawTDOnly VMCDR3 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o3Xi vmcTilePawTDOnly VMCv20110816 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o3Xi vmcTilePawTDOnly VMCv20110909 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o3Xi vmcTilePawTDOnly VMCv20120126 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o3Xi vmcTilePawTDOnly VMCv20121128 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o3Xi vmcTilePawTDOnly VMCv20130304 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o3Xi vmcTilePawTDOnly VMCv20130805 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o3Xi vmcTilePawTDOnly VMCv20140428 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o3Xi vmcTilePawTDOnly VMCv20140903 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o3Xi vmcTilePawTDOnly VMCv20150309 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o3Xi vvvTilePawPrints VVVDR1 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Xi vvvTilePawPrints VVVDR2 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Xi vvvTilePawPrints VVVv20110718 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o3Xi vvvTilePawTDOnly VVVDR1 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o3Xi vvvTilePawTDOnly VVVDR2 Offset of O3 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o4Eta vhsTilePawPrints VHSDR1 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Eta vhsTilePawPrints VHSDR2 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Eta vhsTilePawPrints VHSDR3 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Eta vhsTilePawPrints VHSv20120926 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Eta vhsTilePawPrints VHSv20130417 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Eta vhsTilePawPrints VHSv20140409 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Eta vhsTilePawPrints VHSv20150108 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Eta vhsTilePawTDOnly VHSDR1 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o4Eta vhsTilePawTDOnly VHSDR2 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o4Eta vhsTilePawTDOnly VHSDR3 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o4Eta vhsTilePawTDOnly VHSv20120926 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o4Eta vhsTilePawTDOnly VHSv20130417 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o4Eta vhsTilePawTDOnly VHSv20140409 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o4Eta vhsTilePawTDOnly VHSv20150108 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o4Eta videoTilePawPrints VIDEODR2 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Eta videoTilePawPrints VIDEODR3 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Eta videoTilePawPrints VIDEODR4 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Eta videoTilePawPrints VIDEOv20111208 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Eta videoTilePawTDOnly VIDEODR2 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o4Eta videoTilePawTDOnly VIDEODR3 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o4Eta videoTilePawTDOnly VIDEODR4 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o4Eta videoTilePawTDOnly VIDEOv20111208 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o4Eta vikingTilePawPrints VIKINGDR2 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Eta vikingTilePawPrints VIKINGDR3 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Eta vikingTilePawPrints VIKINGDR4 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Eta vikingTilePawPrints VIKINGv20110714 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Eta vikingTilePawPrints VIKINGv20111019 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Eta vikingTilePawPrints VIKINGv20130417 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Eta vikingTilePawPrints VIKINGv20140402 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Eta vikingTilePawPrints VIKINGv20150421 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Eta vikingTilePawTDOnly VIKINGDR2 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o4Eta vikingTilePawTDOnly VIKINGDR3 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o4Eta vikingTilePawTDOnly VIKINGDR4 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o4Eta vikingTilePawTDOnly VIKINGv20111019 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o4Eta vikingTilePawTDOnly VIKINGv20130417 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o4Eta vikingTilePawTDOnly VIKINGv20140402 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o4Eta vikingTilePawTDOnly VIKINGv20150421 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o4Eta vmcTilePawPrints VMCDR1 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Eta vmcTilePawPrints VMCDR2 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Eta vmcTilePawPrints VMCDR3 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Eta vmcTilePawPrints VMCv20110816 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Eta vmcTilePawPrints VMCv20110909 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Eta vmcTilePawPrints VMCv20120126 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Eta vmcTilePawPrints VMCv20121128 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Eta vmcTilePawPrints VMCv20130304 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Eta vmcTilePawPrints VMCv20130805 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Eta vmcTilePawPrints VMCv20140428 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Eta vmcTilePawPrints VMCv20140903 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Eta vmcTilePawPrints VMCv20150309 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Eta vmcTilePawTDOnly VMCDR1 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o4Eta vmcTilePawTDOnly VMCDR2 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o4Eta vmcTilePawTDOnly VMCDR3 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o4Eta vmcTilePawTDOnly VMCv20110816 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o4Eta vmcTilePawTDOnly VMCv20110909 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o4Eta vmcTilePawTDOnly VMCv20120126 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o4Eta vmcTilePawTDOnly VMCv20121128 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o4Eta vmcTilePawTDOnly VMCv20130304 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o4Eta vmcTilePawTDOnly VMCv20130805 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o4Eta vmcTilePawTDOnly VMCv20140428 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o4Eta vmcTilePawTDOnly VMCv20140903 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o4Eta vmcTilePawTDOnly VMCv20150309 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o4Eta vvvTilePawPrints VVVDR1 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Eta vvvTilePawPrints VVVDR2 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Eta vvvTilePawPrints VVVv20110718 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Eta vvvTilePawTDOnly VVVDR1 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o4Eta vvvTilePawTDOnly VVVDR2 Offset of O4 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o4ExtNum vhsTilePawPrints VHSDR2 the extension number of the O4 detection tinyint 1   2 meta.id
o4ExtNum vhsTilePawPrints VHSDR3 the extension number of the O4 detection tinyint 1   2 meta.id
o4ExtNum vhsTilePawPrints VHSv20120926 the extension number of the O4 detection tinyint 1   2 meta.id
o4ExtNum vhsTilePawPrints VHSv20130417 the extension number of the O4 detection tinyint 1   2 meta.id
o4ExtNum vhsTilePawPrints VHSv20140409 the extension number of the O4 detection tinyint 1   2 meta.id
o4ExtNum vhsTilePawPrints VHSv20150108 the extension number of the O4 detection tinyint 1   2 meta.id
o4ExtNum vhsTilePawPrints, vhsTilePawTDOnly VHSDR1 the extension number of the O4 detection tinyint 1   2 meta.id
o4ExtNum videoTilePawPrints VIDEODR3 the extension number of the O4 detection tinyint 1   2 meta.id
o4ExtNum videoTilePawPrints VIDEODR4 the extension number of the O4 detection tinyint 1   2 meta.id
o4ExtNum videoTilePawPrints VIDEOv20111208 the extension number of the O4 detection tinyint 1   2 meta.id
o4ExtNum videoTilePawPrints, videoTilePawTDOnly VIDEODR2 the extension number of the O4 detection tinyint 1   2 meta.id
o4ExtNum vikingTilePawPrints VIKINGDR3 the extension number of the O4 detection tinyint 1   2 meta.id
o4ExtNum vikingTilePawPrints VIKINGDR4 the extension number of the O4 detection tinyint 1   2 meta.id
o4ExtNum vikingTilePawPrints VIKINGv20110714 the extension number of the O4 detection int 4   -99999999 meta.id
o4ExtNum vikingTilePawPrints VIKINGv20111019 the extension number of the O4 detection tinyint 1   2 meta.id
o4ExtNum vikingTilePawPrints VIKINGv20130417 the extension number of the O4 detection tinyint 1   2 meta.id
o4ExtNum vikingTilePawPrints VIKINGv20140402 the extension number of the O4 detection tinyint 1   2 meta.id
o4ExtNum vikingTilePawPrints VIKINGv20150421 the extension number of the O4 detection tinyint 1   2 meta.id
o4ExtNum vikingTilePawPrints, vikingTilePawTDOnly VIKINGDR2 the extension number of the O4 detection tinyint 1   2 meta.id
o4ExtNum vmcTilePawPrints VMCDR2 the extension number of the O4 detection tinyint 1   2 meta.id
o4ExtNum vmcTilePawPrints VMCDR3 the extension number of the O4 detection tinyint 1   2 meta.id
o4ExtNum vmcTilePawPrints VMCv20110816 the extension number of the O4 detection tinyint 1   2 meta.id
o4ExtNum vmcTilePawPrints VMCv20110909 the extension number of the O4 detection tinyint 1   2 meta.id
o4ExtNum vmcTilePawPrints VMCv20120126 the extension number of the O4 detection tinyint 1   2 meta.id
o4ExtNum vmcTilePawPrints VMCv20121128 the extension number of the O4 detection tinyint 1   2 meta.id
o4ExtNum vmcTilePawPrints VMCv20130304 the extension number of the O4 detection tinyint 1   2 meta.id
o4ExtNum vmcTilePawPrints VMCv20130805 the extension number of the O4 detection tinyint 1   2 meta.id
o4ExtNum vmcTilePawPrints VMCv20140428 the extension number of the O4 detection tinyint 1   2 meta.id
o4ExtNum vmcTilePawPrints VMCv20140903 the extension number of the O4 detection tinyint 1   2 meta.id
o4ExtNum vmcTilePawPrints VMCv20150309 the extension number of the O4 detection tinyint 1   2 meta.id
o4ExtNum vmcTilePawPrints, vmcTilePawTDOnly VMCDR1 the extension number of the O4 detection tinyint 1   2 meta.id
o4ExtNum vvvTilePawPrints VVVDR2 the extension number of the O4 detection tinyint 1   2 meta.id
o4ExtNum vvvTilePawPrints VVVv20110718 the extension number of the O4 detection int 4   -99999999 meta.id
o4ExtNum vvvTilePawPrints, vvvTilePawTDOnly VVVDR1 the extension number of the O4 detection tinyint 1   2 meta.id
o4mfID vhsTileSet VHSDR1 the UID of the relevant offset O4 multiframe bigint 8     obs.field
o4mfID vhsTileSet VHSDR2 the UID of the relevant offset O4 multiframe bigint 8     obs.field
o4mfID vhsTileSet VHSDR3 the UID of the relevant offset O4 multiframe bigint 8     meta.id;obs.field
o4mfID vhsTileSet VHSv20120926 the UID of the relevant offset O4 multiframe bigint 8     meta.id;obs.field
o4mfID vhsTileSet VHSv20130417 the UID of the relevant offset O4 multiframe bigint 8     meta.id;obs.field
o4mfID vhsTileSet VHSv20140409 the UID of the relevant offset O4 multiframe bigint 8     meta.id;obs.field
o4mfID vhsTileSet VHSv20150108 the UID of the relevant offset O4 multiframe bigint 8     meta.id;obs.field
o4mfID videoTileSet VIDEODR2 the UID of the relevant offset O4 multiframe bigint 8     obs.field
o4mfID videoTileSet VIDEODR3 the UID of the relevant offset O4 multiframe bigint 8     meta.id;obs.field
o4mfID videoTileSet VIDEODR4 the UID of the relevant offset O4 multiframe bigint 8     meta.id;obs.field
o4mfID videoTileSet VIDEOv20111208 the UID of the relevant offset O4 multiframe bigint 8     obs.field
o4mfID vikingTileSet VIKINGDR2 the UID of the relevant offset O4 multiframe bigint 8     obs.field
o4mfID vikingTileSet VIKINGDR3 the UID of the relevant offset O4 multiframe bigint 8     meta.id;obs.field
o4mfID vikingTileSet VIKINGDR4 the UID of the relevant offset O4 multiframe bigint 8     meta.id;obs.field
o4mfID vikingTileSet VIKINGv20110714 the UID of the relevant offset O4 multiframe bigint 8     obs.field
o4mfID vikingTileSet VIKINGv20111019 the UID of the relevant offset O4 multiframe bigint 8     obs.field
o4mfID vikingTileSet VIKINGv20130417 the UID of the relevant offset O4 multiframe bigint 8     meta.id;obs.field
o4mfID vikingTileSet VIKINGv20140402 the UID of the relevant offset O4 multiframe bigint 8     meta.id;obs.field
o4mfID vikingTileSet VIKINGv20150421 the UID of the relevant offset O4 multiframe bigint 8     meta.id;obs.field
o4mfID vmcTileSet VMCDR1 the UID of the relevant offset O4 multiframe bigint 8     obs.field
o4mfID vmcTileSet VMCDR2 the UID of the relevant offset O4 multiframe bigint 8     meta.id;obs.field
o4mfID vmcTileSet VMCDR3 the UID of the relevant offset O4 multiframe bigint 8     meta.id;obs.field
o4mfID vmcTileSet VMCv20110816 the UID of the relevant offset O4 multiframe bigint 8     obs.field
o4mfID vmcTileSet VMCv20110909 the UID of the relevant offset O4 multiframe bigint 8     obs.field
o4mfID vmcTileSet VMCv20120126 the UID of the relevant offset O4 multiframe bigint 8     obs.field
o4mfID vmcTileSet VMCv20121128 the UID of the relevant offset O4 multiframe bigint 8     meta.id;obs.field
o4mfID vmcTileSet VMCv20130304 the UID of the relevant offset O4 multiframe bigint 8     meta.id;obs.field
o4mfID vmcTileSet VMCv20130805 the UID of the relevant offset O4 multiframe bigint 8     meta.id;obs.field
o4mfID vmcTileSet VMCv20140428 the UID of the relevant offset O4 multiframe bigint 8     meta.id;obs.field
o4mfID vmcTileSet VMCv20140903 the UID of the relevant offset O4 multiframe bigint 8     meta.id;obs.field
o4mfID vmcTileSet VMCv20150309 the UID of the relevant offset O4 multiframe bigint 8     meta.id;obs.field
o4mfID vvvTileSet VVVDR1 the UID of the relevant offset O4 multiframe bigint 8     meta.id;obs.field
o4mfID vvvTileSet VVVDR2 the UID of the relevant offset O4 multiframe bigint 8     meta.id;obs.field
o4mfID vvvTileSet VVVv20110718 the UID of the relevant offset O4 multiframe bigint 8     obs.field
o4SeqNum vhsTilePawPrints VHSDR2 the running number of the O4 detection int 4   -99999999 meta.id
o4SeqNum vhsTilePawPrints VHSDR3 the running number of the O4 detection int 4   -99999999 meta.number
o4SeqNum vhsTilePawPrints VHSv20120926 the running number of the O4 detection int 4   -99999999 meta.number
o4SeqNum vhsTilePawPrints VHSv20130417 the running number of the O4 detection int 4   -99999999 meta.number
o4SeqNum vhsTilePawPrints VHSv20140409 the running number of the O4 detection int 4   -99999999 meta.number
o4SeqNum vhsTilePawPrints VHSv20150108 the running number of the O4 detection int 4   -99999999 meta.number
o4SeqNum vhsTilePawPrints, vhsTilePawTDOnly VHSDR1 the running number of the O4 detection int 4   -99999999 meta.id
o4SeqNum videoTilePawPrints VIDEODR3 the running number of the O4 detection int 4   -99999999 meta.number
o4SeqNum videoTilePawPrints VIDEODR4 the running number of the O4 detection int 4   -99999999 meta.number
o4SeqNum videoTilePawPrints VIDEOv20111208 the running number of the O4 detection int 4   -99999999 meta.id
o4SeqNum videoTilePawPrints, videoTilePawTDOnly VIDEODR2 the running number of the O4 detection int 4   -99999999 meta.id
o4SeqNum vikingTilePawPrints VIKINGDR3 the running number of the O4 detection int 4   -99999999 meta.number
o4SeqNum vikingTilePawPrints VIKINGDR4 the running number of the O4 detection int 4   -99999999 meta.number
o4SeqNum vikingTilePawPrints VIKINGv20110714 the running number of the O4 detection int 4   -99999999 meta.id
o4SeqNum vikingTilePawPrints VIKINGv20111019 the running number of the O4 detection int 4   -99999999 meta.id
o4SeqNum vikingTilePawPrints VIKINGv20130417 the running number of the O4 detection int 4   -99999999 meta.number
o4SeqNum vikingTilePawPrints VIKINGv20140402 the running number of the O4 detection int 4   -99999999 meta.number
o4SeqNum vikingTilePawPrints VIKINGv20150421 the running number of the O4 detection int 4   -99999999 meta.number
o4SeqNum vikingTilePawPrints, vikingTilePawTDOnly VIKINGDR2 the running number of the O4 detection int 4   -99999999 meta.id
o4SeqNum vmcTilePawPrints VMCDR2 the running number of the O4 detection int 4   -99999999 meta.number
o4SeqNum vmcTilePawPrints VMCDR3 the running number of the O4 detection int 4   -99999999 meta.number
o4SeqNum vmcTilePawPrints VMCv20110816 the running number of the O4 detection int 4   -99999999 meta.id
o4SeqNum vmcTilePawPrints VMCv20110909 the running number of the O4 detection int 4   -99999999 meta.id
o4SeqNum vmcTilePawPrints VMCv20120126 the running number of the O4 detection int 4   -99999999 meta.id
o4SeqNum vmcTilePawPrints VMCv20121128 the running number of the O4 detection int 4   -99999999 meta.number
o4SeqNum vmcTilePawPrints VMCv20130304 the running number of the O4 detection int 4   -99999999 meta.number
o4SeqNum vmcTilePawPrints VMCv20130805 the running number of the O4 detection int 4   -99999999 meta.number
o4SeqNum vmcTilePawPrints VMCv20140428 the running number of the O4 detection int 4   -99999999 meta.number
o4SeqNum vmcTilePawPrints VMCv20140903 the running number of the O4 detection int 4   -99999999 meta.number
o4SeqNum vmcTilePawPrints VMCv20150309 the running number of the O4 detection int 4   -99999999 meta.number
o4SeqNum vmcTilePawPrints, vmcTilePawTDOnly VMCDR1 the running number of the O4 detection int 4   -99999999 meta.id
o4SeqNum vvvTilePawPrints VVVDR2 the running number of the O4 detection int 4   -99999999 meta.number
o4SeqNum vvvTilePawPrints VVVv20110718 the running number of the O4 detection int 4   -99999999 meta.id
o4SeqNum vvvTilePawPrints, vvvTilePawTDOnly VVVDR1 the running number of the O4 detection int 4   -99999999 meta.number
o4Xi vhsTilePawPrints VHSDR1 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Xi vhsTilePawPrints VHSDR2 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Xi vhsTilePawPrints VHSDR3 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Xi vhsTilePawPrints VHSv20120926 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Xi vhsTilePawPrints VHSv20130417 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Xi vhsTilePawPrints VHSv20140409 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Xi vhsTilePawPrints VHSv20150108 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Xi vhsTilePawTDOnly VHSDR1 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o4Xi vhsTilePawTDOnly VHSDR2 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o4Xi vhsTilePawTDOnly VHSDR3 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o4Xi vhsTilePawTDOnly VHSv20120926 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o4Xi vhsTilePawTDOnly VHSv20130417 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o4Xi vhsTilePawTDOnly VHSv20140409 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o4Xi vhsTilePawTDOnly VHSv20150108 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o4Xi videoTilePawPrints VIDEODR2 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Xi videoTilePawPrints VIDEODR3 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Xi videoTilePawPrints VIDEODR4 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Xi videoTilePawPrints VIDEOv20111208 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Xi videoTilePawTDOnly VIDEODR2 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o4Xi videoTilePawTDOnly VIDEODR3 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o4Xi videoTilePawTDOnly VIDEODR4 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o4Xi videoTilePawTDOnly VIDEOv20111208 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o4Xi vikingTilePawPrints VIKINGDR2 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Xi vikingTilePawPrints VIKINGDR3 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Xi vikingTilePawPrints VIKINGDR4 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Xi vikingTilePawPrints VIKINGv20110714 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Xi vikingTilePawPrints VIKINGv20111019 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Xi vikingTilePawPrints VIKINGv20130417 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Xi vikingTilePawPrints VIKINGv20140402 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Xi vikingTilePawPrints VIKINGv20150421 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Xi vikingTilePawTDOnly VIKINGDR2 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o4Xi vikingTilePawTDOnly VIKINGDR3 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o4Xi vikingTilePawTDOnly VIKINGDR4 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o4Xi vikingTilePawTDOnly VIKINGv20111019 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o4Xi vikingTilePawTDOnly VIKINGv20130417 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o4Xi vikingTilePawTDOnly VIKINGv20140402 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o4Xi vikingTilePawTDOnly VIKINGv20150421 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o4Xi vmcTilePawPrints VMCDR1 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Xi vmcTilePawPrints VMCDR2 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Xi vmcTilePawPrints VMCDR3 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Xi vmcTilePawPrints VMCv20110816 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Xi vmcTilePawPrints VMCv20110909 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Xi vmcTilePawPrints VMCv20120126 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Xi vmcTilePawPrints VMCv20121128 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Xi vmcTilePawPrints VMCv20130304 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Xi vmcTilePawPrints VMCv20130805 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Xi vmcTilePawPrints VMCv20140428 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Xi vmcTilePawPrints VMCv20140903 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Xi vmcTilePawPrints VMCv20150309 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Xi vmcTilePawTDOnly VMCDR1 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o4Xi vmcTilePawTDOnly VMCDR2 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o4Xi vmcTilePawTDOnly VMCDR3 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o4Xi vmcTilePawTDOnly VMCv20110816 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o4Xi vmcTilePawTDOnly VMCv20110909 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o4Xi vmcTilePawTDOnly VMCv20120126 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o4Xi vmcTilePawTDOnly VMCv20121128 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o4Xi vmcTilePawTDOnly VMCv20130304 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o4Xi vmcTilePawTDOnly VMCv20130805 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o4Xi vmcTilePawTDOnly VMCv20140428 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o4Xi vmcTilePawTDOnly VMCv20140903 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o4Xi vmcTilePawTDOnly VMCv20150309 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o4Xi vvvTilePawPrints VVVDR1 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Xi vvvTilePawPrints VVVDR2 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Xi vvvTilePawPrints VVVv20110718 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o4Xi vvvTilePawTDOnly VVVDR1 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o4Xi vvvTilePawTDOnly VVVDR2 Offset of O4 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o5Eta vhsTilePawPrints VHSDR1 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Eta vhsTilePawPrints VHSDR2 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Eta vhsTilePawPrints VHSDR3 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Eta vhsTilePawPrints VHSv20120926 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Eta vhsTilePawPrints VHSv20130417 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Eta vhsTilePawPrints VHSv20140409 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Eta vhsTilePawPrints VHSv20150108 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Eta vhsTilePawTDOnly VHSDR1 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o5Eta vhsTilePawTDOnly VHSDR2 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o5Eta vhsTilePawTDOnly VHSDR3 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o5Eta vhsTilePawTDOnly VHSv20120926 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o5Eta vhsTilePawTDOnly VHSv20130417 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o5Eta vhsTilePawTDOnly VHSv20140409 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o5Eta vhsTilePawTDOnly VHSv20150108 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o5Eta videoTilePawPrints VIDEODR2 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Eta videoTilePawPrints VIDEODR3 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Eta videoTilePawPrints VIDEODR4 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Eta videoTilePawPrints VIDEOv20111208 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Eta videoTilePawTDOnly VIDEODR2 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o5Eta videoTilePawTDOnly VIDEODR3 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o5Eta videoTilePawTDOnly VIDEODR4 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o5Eta videoTilePawTDOnly VIDEOv20111208 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o5Eta vikingTilePawPrints VIKINGDR2 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Eta vikingTilePawPrints VIKINGDR3 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Eta vikingTilePawPrints VIKINGDR4 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Eta vikingTilePawPrints VIKINGv20110714 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Eta vikingTilePawPrints VIKINGv20111019 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Eta vikingTilePawPrints VIKINGv20130417 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Eta vikingTilePawPrints VIKINGv20140402 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Eta vikingTilePawPrints VIKINGv20150421 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Eta vikingTilePawTDOnly VIKINGDR2 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o5Eta vikingTilePawTDOnly VIKINGDR3 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o5Eta vikingTilePawTDOnly VIKINGDR4 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o5Eta vikingTilePawTDOnly VIKINGv20111019 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o5Eta vikingTilePawTDOnly VIKINGv20130417 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o5Eta vikingTilePawTDOnly VIKINGv20140402 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o5Eta vikingTilePawTDOnly VIKINGv20150421 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o5Eta vmcTilePawPrints VMCDR1 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Eta vmcTilePawPrints VMCDR2 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Eta vmcTilePawPrints VMCDR3 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Eta vmcTilePawPrints VMCv20110816 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Eta vmcTilePawPrints VMCv20110909 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Eta vmcTilePawPrints VMCv20120126 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Eta vmcTilePawPrints VMCv20121128 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Eta vmcTilePawPrints VMCv20130304 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Eta vmcTilePawPrints VMCv20130805 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Eta vmcTilePawPrints VMCv20140428 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Eta vmcTilePawPrints VMCv20140903 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Eta vmcTilePawPrints VMCv20150309 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Eta vmcTilePawTDOnly VMCDR1 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o5Eta vmcTilePawTDOnly VMCDR2 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o5Eta vmcTilePawTDOnly VMCDR3 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o5Eta vmcTilePawTDOnly VMCv20110816 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o5Eta vmcTilePawTDOnly VMCv20110909 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o5Eta vmcTilePawTDOnly VMCv20120126 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o5Eta vmcTilePawTDOnly VMCv20121128 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o5Eta vmcTilePawTDOnly VMCv20130304 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o5Eta vmcTilePawTDOnly VMCv20130805 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o5Eta vmcTilePawTDOnly VMCv20140428 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o5Eta vmcTilePawTDOnly VMCv20140903 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o5Eta vmcTilePawTDOnly VMCv20150309 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o5Eta vvvTilePawPrints VVVDR1 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Eta vvvTilePawPrints VVVDR2 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Eta vvvTilePawPrints VVVv20110718 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Eta vvvTilePawTDOnly VVVDR1 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o5Eta vvvTilePawTDOnly VVVDR2 Offset of O5 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o5ExtNum vhsTilePawPrints VHSDR2 the extension number of the O5 detection tinyint 1   2 meta.id
o5ExtNum vhsTilePawPrints VHSDR3 the extension number of the O5 detection tinyint 1   2 meta.id
o5ExtNum vhsTilePawPrints VHSv20120926 the extension number of the O5 detection tinyint 1   2 meta.id
o5ExtNum vhsTilePawPrints VHSv20130417 the extension number of the O5 detection tinyint 1   2 meta.id
o5ExtNum vhsTilePawPrints VHSv20140409 the extension number of the O5 detection tinyint 1   2 meta.id
o5ExtNum vhsTilePawPrints VHSv20150108 the extension number of the O5 detection tinyint 1   2 meta.id
o5ExtNum vhsTilePawPrints, vhsTilePawTDOnly VHSDR1 the extension number of the O5 detection tinyint 1   2 meta.id
o5ExtNum videoTilePawPrints VIDEODR3 the extension number of the O5 detection tinyint 1   2 meta.id
o5ExtNum videoTilePawPrints VIDEODR4 the extension number of the O5 detection tinyint 1   2 meta.id
o5ExtNum videoTilePawPrints VIDEOv20111208 the extension number of the O5 detection tinyint 1   2 meta.id
o5ExtNum videoTilePawPrints, videoTilePawTDOnly VIDEODR2 the extension number of the O5 detection tinyint 1   2 meta.id
o5ExtNum vikingTilePawPrints VIKINGDR3 the extension number of the O5 detection tinyint 1   2 meta.id
o5ExtNum vikingTilePawPrints VIKINGDR4 the extension number of the O5 detection tinyint 1   2 meta.id
o5ExtNum vikingTilePawPrints VIKINGv20110714 the extension number of the O5 detection int 4   -99999999 meta.id
o5ExtNum vikingTilePawPrints VIKINGv20111019 the extension number of the O5 detection tinyint 1   2 meta.id
o5ExtNum vikingTilePawPrints VIKINGv20130417 the extension number of the O5 detection tinyint 1   2 meta.id
o5ExtNum vikingTilePawPrints VIKINGv20140402 the extension number of the O5 detection tinyint 1   2 meta.id
o5ExtNum vikingTilePawPrints VIKINGv20150421 the extension number of the O5 detection tinyint 1   2 meta.id
o5ExtNum vikingTilePawPrints, vikingTilePawTDOnly VIKINGDR2 the extension number of the O5 detection tinyint 1   2 meta.id
o5ExtNum vmcTilePawPrints VMCDR2 the extension number of the O5 detection tinyint 1   2 meta.id
o5ExtNum vmcTilePawPrints VMCDR3 the extension number of the O5 detection tinyint 1   2 meta.id
o5ExtNum vmcTilePawPrints VMCv20110816 the extension number of the O5 detection tinyint 1   2 meta.id
o5ExtNum vmcTilePawPrints VMCv20110909 the extension number of the O5 detection tinyint 1   2 meta.id
o5ExtNum vmcTilePawPrints VMCv20120126 the extension number of the O5 detection tinyint 1   2 meta.id
o5ExtNum vmcTilePawPrints VMCv20121128 the extension number of the O5 detection tinyint 1   2 meta.id
o5ExtNum vmcTilePawPrints VMCv20130304 the extension number of the O5 detection tinyint 1   2 meta.id
o5ExtNum vmcTilePawPrints VMCv20130805 the extension number of the O5 detection tinyint 1   2 meta.id
o5ExtNum vmcTilePawPrints VMCv20140428 the extension number of the O5 detection tinyint 1   2 meta.id
o5ExtNum vmcTilePawPrints VMCv20140903 the extension number of the O5 detection tinyint 1   2 meta.id
o5ExtNum vmcTilePawPrints VMCv20150309 the extension number of the O5 detection tinyint 1   2 meta.id
o5ExtNum vmcTilePawPrints, vmcTilePawTDOnly VMCDR1 the extension number of the O5 detection tinyint 1   2 meta.id
o5ExtNum vvvTilePawPrints VVVDR2 the extension number of the O5 detection tinyint 1   2 meta.id
o5ExtNum vvvTilePawPrints VVVv20110718 the extension number of the O5 detection int 4   -99999999 meta.id
o5ExtNum vvvTilePawPrints, vvvTilePawTDOnly VVVDR1 the extension number of the O5 detection tinyint 1   2 meta.id
o5mfID vhsTileSet VHSDR1 the UID of the relevant offset O5 multiframe bigint 8     obs.field
o5mfID vhsTileSet VHSDR2 the UID of the relevant offset O5 multiframe bigint 8     obs.field
o5mfID vhsTileSet VHSDR3 the UID of the relevant offset O5 multiframe bigint 8     meta.id;obs.field
o5mfID vhsTileSet VHSv20120926 the UID of the relevant offset O5 multiframe bigint 8     meta.id;obs.field
o5mfID vhsTileSet VHSv20130417 the UID of the relevant offset O5 multiframe bigint 8     meta.id;obs.field
o5mfID vhsTileSet VHSv20140409 the UID of the relevant offset O5 multiframe bigint 8     meta.id;obs.field
o5mfID vhsTileSet VHSv20150108 the UID of the relevant offset O5 multiframe bigint 8     meta.id;obs.field
o5mfID videoTileSet VIDEODR2 the UID of the relevant offset O5 multiframe bigint 8     obs.field
o5mfID videoTileSet VIDEODR3 the UID of the relevant offset O5 multiframe bigint 8     meta.id;obs.field
o5mfID videoTileSet VIDEODR4 the UID of the relevant offset O5 multiframe bigint 8     meta.id;obs.field
o5mfID videoTileSet VIDEOv20111208 the UID of the relevant offset O5 multiframe bigint 8     obs.field
o5mfID vikingTileSet VIKINGDR2 the UID of the relevant offset O5 multiframe bigint 8     obs.field
o5mfID vikingTileSet VIKINGDR3 the UID of the relevant offset O5 multiframe bigint 8     meta.id;obs.field
o5mfID vikingTileSet VIKINGDR4 the UID of the relevant offset O5 multiframe bigint 8     meta.id;obs.field
o5mfID vikingTileSet VIKINGv20110714 the UID of the relevant offset O5 multiframe bigint 8     obs.field
o5mfID vikingTileSet VIKINGv20111019 the UID of the relevant offset O5 multiframe bigint 8     obs.field
o5mfID vikingTileSet VIKINGv20130417 the UID of the relevant offset O5 multiframe bigint 8     meta.id;obs.field
o5mfID vikingTileSet VIKINGv20140402 the UID of the relevant offset O5 multiframe bigint 8     meta.id;obs.field
o5mfID vikingTileSet VIKINGv20150421 the UID of the relevant offset O5 multiframe bigint 8     meta.id;obs.field
o5mfID vmcTileSet VMCDR1 the UID of the relevant offset O5 multiframe bigint 8     obs.field
o5mfID vmcTileSet VMCDR2 the UID of the relevant offset O5 multiframe bigint 8     meta.id;obs.field
o5mfID vmcTileSet VMCDR3 the UID of the relevant offset O5 multiframe bigint 8     meta.id;obs.field
o5mfID vmcTileSet VMCv20110816 the UID of the relevant offset O5 multiframe bigint 8     obs.field
o5mfID vmcTileSet VMCv20110909 the UID of the relevant offset O5 multiframe bigint 8     obs.field
o5mfID vmcTileSet VMCv20120126 the UID of the relevant offset O5 multiframe bigint 8     obs.field
o5mfID vmcTileSet VMCv20121128 the UID of the relevant offset O5 multiframe bigint 8     meta.id;obs.field
o5mfID vmcTileSet VMCv20130304 the UID of the relevant offset O5 multiframe bigint 8     meta.id;obs.field
o5mfID vmcTileSet VMCv20130805 the UID of the relevant offset O5 multiframe bigint 8     meta.id;obs.field
o5mfID vmcTileSet VMCv20140428 the UID of the relevant offset O5 multiframe bigint 8     meta.id;obs.field
o5mfID vmcTileSet VMCv20140903 the UID of the relevant offset O5 multiframe bigint 8     meta.id;obs.field
o5mfID vmcTileSet VMCv20150309 the UID of the relevant offset O5 multiframe bigint 8     meta.id;obs.field
o5mfID vvvTileSet VVVDR1 the UID of the relevant offset O5 multiframe bigint 8     meta.id;obs.field
o5mfID vvvTileSet VVVDR2 the UID of the relevant offset O5 multiframe bigint 8     meta.id;obs.field
o5mfID vvvTileSet VVVv20110718 the UID of the relevant offset O5 multiframe bigint 8     obs.field
o5SeqNum vhsTilePawPrints VHSDR2 the running number of the O5 detection int 4   -99999999 meta.id
o5SeqNum vhsTilePawPrints VHSDR3 the running number of the O5 detection int 4   -99999999 meta.number
o5SeqNum vhsTilePawPrints VHSv20120926 the running number of the O5 detection int 4   -99999999 meta.number
o5SeqNum vhsTilePawPrints VHSv20130417 the running number of the O5 detection int 4   -99999999 meta.number
o5SeqNum vhsTilePawPrints VHSv20140409 the running number of the O5 detection int 4   -99999999 meta.number
o5SeqNum vhsTilePawPrints VHSv20150108 the running number of the O5 detection int 4   -99999999 meta.number
o5SeqNum vhsTilePawPrints, vhsTilePawTDOnly VHSDR1 the running number of the O5 detection int 4   -99999999 meta.id
o5SeqNum videoTilePawPrints VIDEODR3 the running number of the O5 detection int 4   -99999999 meta.number
o5SeqNum videoTilePawPrints VIDEODR4 the running number of the O5 detection int 4   -99999999 meta.number
o5SeqNum videoTilePawPrints VIDEOv20111208 the running number of the O5 detection int 4   -99999999 meta.id
o5SeqNum videoTilePawPrints, videoTilePawTDOnly VIDEODR2 the running number of the O5 detection int 4   -99999999 meta.id
o5SeqNum vikingTilePawPrints VIKINGDR3 the running number of the O5 detection int 4   -99999999 meta.number
o5SeqNum vikingTilePawPrints VIKINGDR4 the running number of the O5 detection int 4   -99999999 meta.number
o5SeqNum vikingTilePawPrints VIKINGv20110714 the running number of the O5 detection int 4   -99999999 meta.id
o5SeqNum vikingTilePawPrints VIKINGv20111019 the running number of the O5 detection int 4   -99999999 meta.id
o5SeqNum vikingTilePawPrints VIKINGv20130417 the running number of the O5 detection int 4   -99999999 meta.number
o5SeqNum vikingTilePawPrints VIKINGv20140402 the running number of the O5 detection int 4   -99999999 meta.number
o5SeqNum vikingTilePawPrints VIKINGv20150421 the running number of the O5 detection int 4   -99999999 meta.number
o5SeqNum vikingTilePawPrints, vikingTilePawTDOnly VIKINGDR2 the running number of the O5 detection int 4   -99999999 meta.id
o5SeqNum vmcTilePawPrints VMCDR2 the running number of the O5 detection int 4   -99999999 meta.number
o5SeqNum vmcTilePawPrints VMCDR3 the running number of the O5 detection int 4   -99999999 meta.number
o5SeqNum vmcTilePawPrints VMCv20110816 the running number of the O5 detection int 4   -99999999 meta.id
o5SeqNum vmcTilePawPrints VMCv20110909 the running number of the O5 detection int 4   -99999999 meta.id
o5SeqNum vmcTilePawPrints VMCv20120126 the running number of the O5 detection int 4   -99999999 meta.id
o5SeqNum vmcTilePawPrints VMCv20121128 the running number of the O5 detection int 4   -99999999 meta.number
o5SeqNum vmcTilePawPrints VMCv20130304 the running number of the O5 detection int 4   -99999999 meta.number
o5SeqNum vmcTilePawPrints VMCv20130805 the running number of the O5 detection int 4   -99999999 meta.number
o5SeqNum vmcTilePawPrints VMCv20140428 the running number of the O5 detection int 4   -99999999 meta.number
o5SeqNum vmcTilePawPrints VMCv20140903 the running number of the O5 detection int 4   -99999999 meta.number
o5SeqNum vmcTilePawPrints VMCv20150309 the running number of the O5 detection int 4   -99999999 meta.number
o5SeqNum vmcTilePawPrints, vmcTilePawTDOnly VMCDR1 the running number of the O5 detection int 4   -99999999 meta.id
o5SeqNum vvvTilePawPrints VVVDR2 the running number of the O5 detection int 4   -99999999 meta.number
o5SeqNum vvvTilePawPrints VVVv20110718 the running number of the O5 detection int 4   -99999999 meta.id
o5SeqNum vvvTilePawPrints, vvvTilePawTDOnly VVVDR1 the running number of the O5 detection int 4   -99999999 meta.number
o5Xi vhsTilePawPrints VHSDR1 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Xi vhsTilePawPrints VHSDR2 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Xi vhsTilePawPrints VHSDR3 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Xi vhsTilePawPrints VHSv20120926 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Xi vhsTilePawPrints VHSv20130417 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Xi vhsTilePawPrints VHSv20140409 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Xi vhsTilePawPrints VHSv20150108 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Xi vhsTilePawTDOnly VHSDR1 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o5Xi vhsTilePawTDOnly VHSDR2 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o5Xi vhsTilePawTDOnly VHSDR3 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o5Xi vhsTilePawTDOnly VHSv20120926 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o5Xi vhsTilePawTDOnly VHSv20130417 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o5Xi vhsTilePawTDOnly VHSv20140409 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o5Xi vhsTilePawTDOnly VHSv20150108 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o5Xi videoTilePawPrints VIDEODR2 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Xi videoTilePawPrints VIDEODR3 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Xi videoTilePawPrints VIDEODR4 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Xi videoTilePawPrints VIDEOv20111208 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Xi videoTilePawTDOnly VIDEODR2 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o5Xi videoTilePawTDOnly VIDEODR3 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o5Xi videoTilePawTDOnly VIDEODR4 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o5Xi videoTilePawTDOnly VIDEOv20111208 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o5Xi vikingTilePawPrints VIKINGDR2 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Xi vikingTilePawPrints VIKINGDR3 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Xi vikingTilePawPrints VIKINGDR4 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Xi vikingTilePawPrints VIKINGv20110714 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Xi vikingTilePawPrints VIKINGv20111019 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Xi vikingTilePawPrints VIKINGv20130417 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Xi vikingTilePawPrints VIKINGv20140402 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Xi vikingTilePawPrints VIKINGv20150421 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Xi vikingTilePawTDOnly VIKINGDR2 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o5Xi vikingTilePawTDOnly VIKINGDR3 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o5Xi vikingTilePawTDOnly VIKINGDR4 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o5Xi vikingTilePawTDOnly VIKINGv20111019 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o5Xi vikingTilePawTDOnly VIKINGv20130417 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o5Xi vikingTilePawTDOnly VIKINGv20140402 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o5Xi vikingTilePawTDOnly VIKINGv20150421 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o5Xi vmcTilePawPrints VMCDR1 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Xi vmcTilePawPrints VMCDR2 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Xi vmcTilePawPrints VMCDR3 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Xi vmcTilePawPrints VMCv20110816 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Xi vmcTilePawPrints VMCv20110909 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Xi vmcTilePawPrints VMCv20120126 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Xi vmcTilePawPrints VMCv20121128 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Xi vmcTilePawPrints VMCv20130304 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Xi vmcTilePawPrints VMCv20130805 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Xi vmcTilePawPrints VMCv20140428 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Xi vmcTilePawPrints VMCv20140903 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Xi vmcTilePawPrints VMCv20150309 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Xi vmcTilePawTDOnly VMCDR1 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o5Xi vmcTilePawTDOnly VMCDR2 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o5Xi vmcTilePawTDOnly VMCDR3 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o5Xi vmcTilePawTDOnly VMCv20110816 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o5Xi vmcTilePawTDOnly VMCv20110909 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o5Xi vmcTilePawTDOnly VMCv20120126 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o5Xi vmcTilePawTDOnly VMCv20121128 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o5Xi vmcTilePawTDOnly VMCv20130304 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o5Xi vmcTilePawTDOnly VMCv20130805 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o5Xi vmcTilePawTDOnly VMCv20140428 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o5Xi vmcTilePawTDOnly VMCv20140903 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o5Xi vmcTilePawTDOnly VMCv20150309 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o5Xi vvvTilePawPrints VVVDR1 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Xi vvvTilePawPrints VVVDR2 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Xi vvvTilePawPrints VVVv20110718 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o5Xi vvvTilePawTDOnly VVVDR1 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o5Xi vvvTilePawTDOnly VVVDR2 Offset of O5 detection from master position (+east/-west) real 4 arcsec -0.9999995e9 pos.eq.ra;arith.diff
o6Eta vhsTilePawPrints VHSDR1 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o6Eta vhsTilePawPrints VHSDR2 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o6Eta vhsTilePawPrints VHSDR3 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o6Eta vhsTilePawPrints VHSv20120926 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o6Eta vhsTilePawPrints VHSv20130417 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o6Eta vhsTilePawPrints VHSv20140409 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o6Eta vhsTilePawPrints VHSv20150108 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o6Eta vhsTilePawTDOnly VHSDR1 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o6Eta vhsTilePawTDOnly VHSDR2 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o6Eta vhsTilePawTDOnly VHSDR3 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o6Eta vhsTilePawTDOnly VHSv20120926 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o6Eta vhsTilePawTDOnly VHSv20130417 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o6Eta vhsTilePawTDOnly VHSv20140409 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o6Eta vhsTilePawTDOnly VHSv20150108 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o6Eta videoTilePawPrints VIDEODR2 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o6Eta videoTilePawPrints VIDEODR3 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o6Eta videoTilePawPrints VIDEODR4 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o6Eta videoTilePawPrints VIDEOv20111208 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o6Eta videoTilePawTDOnly VIDEODR2 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o6Eta videoTilePawTDOnly VIDEODR3 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o6Eta videoTilePawTDOnly VIDEODR4 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o6Eta videoTilePawTDOnly VIDEOv20111208 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o6Eta vikingTilePawPrints VIKINGDR2 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o6Eta vikingTilePawPrints VIKINGDR3 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o6Eta vikingTilePawPrints VIKINGDR4 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o6Eta vikingTilePawPrints VIKINGv20110714 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o6Eta vikingTilePawPrints VIKINGv20111019 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o6Eta vikingTilePawPrints VIKINGv20130417 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o6Eta vikingTilePawPrints VIKINGv20140402 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o6Eta vikingTilePawPrints VIKINGv20150421 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o6Eta vikingTilePawTDOnly VIKINGDR2 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o6Eta vikingTilePawTDOnly VIKINGDR3 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o6Eta vikingTilePawTDOnly VIKINGDR4 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o6Eta vikingTilePawTDOnly VIKINGv20111019 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o6Eta vikingTilePawTDOnly VIKINGv20130417 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o6Eta vikingTilePawTDOnly VIKINGv20140402 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o6Eta vikingTilePawTDOnly VIKINGv20150421 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o6Eta vmcTilePawPrints VMCDR1 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o6Eta vmcTilePawPrints VMCDR2 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o6Eta vmcTilePawPrints VMCDR3 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o6Eta vmcTilePawPrints VMCv20110816 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o6Eta vmcTilePawPrints VMCv20110909 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o6Eta vmcTilePawPrints VMCv20120126 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o6Eta vmcTilePawPrints VMCv20121128 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o6Eta vmcTilePawPrints VMCv20130304 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o6Eta vmcTilePawPrints VMCv20130805 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o6Eta vmcTilePawPrints VMCv20140428 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o6Eta vmcTilePawPrints VMCv20140903 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o6Eta vmcTilePawPrints VMCv20150309 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o6Eta vmcTilePawTDOnly VMCDR1 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o6Eta vmcTilePawTDOnly VMCDR2 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o6Eta vmcTilePawTDOnly VMCDR3 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o6Eta vmcTilePawTDOnly VMCv20110816 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o6Eta vmcTilePawTDOnly VMCv20110909 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o6Eta vmcTilePawTDOnly VMCv20120126 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o6Eta vmcTilePawTDOnly VMCv20121128 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o6Eta vmcTilePawTDOnly VMCv20130304 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o6Eta vmcTilePawTDOnly VMCv20130805 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o6Eta vmcTilePawTDOnly VMCv20140428 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o6Eta vmcTilePawTDOnly VMCv20140903 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o6Eta vmcTilePawTDOnly VMCv20150309 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o6Eta vvvTilePawPrints VVVDR1 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o6Eta vvvTilePawPrints VVVDR2 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o6Eta vvvTilePawPrints VVVv20110718 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
When associating individual passband detections into merged sources, a generous (in terms of the positional uncertainties) pairing radius of 1.0 arcseconds is used. Such a large association criterion can of course lead to spurious pairings in the merged sources lists (although note that between passband pairs, handshake pairing is done: both passbands must agree that the candidate pair is their nearest neighbour for the pair to propagate through into the merged source table). In order to help filter spurious pairings out, and assuming that large positional offsets between the different passband detections are not expected (e.g. because of source motion, or larger than usual positional uncertainties) then the attributes Xi and Eta can be used to filter any pairings with suspiciously large offsets in one or more bands. For example, for a clean sample of QSOs from the VHS, you might wish to insist that the offsets in the selected sample are all below 0.5 arcsecond: simply add WHERE clauses into the SQL sample selection script to exclude all Xi and Eta values larger than the threshold you want. NB: the master position is the position of the detection in the shortest passband in the set, rather than the ra/dec of the source as stored in source attributes of the same name. The former is used in the pairing process, while the latter is generally the optimally weighted mean position from an astrometric solution or other combinatorial process of all individual detection positions across the available passbands.
o6Eta vvvTilePawTDOnly VVVDR1 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o6Eta vvvTilePawTDOnly VVVDR2 Offset of O6 detection from master position (+north/-south) real 4 arcsec -0.9999995e9 pos.eq.dec;arith.diff
o6ExtNum vhsTilePawPrints VHSDR2 the extension number of the O6 detection tinyint 1   2 meta.id
o6ExtNum vhsTilePawPrints VHSDR3 the extension number of the O6 detection tinyint 1   2 meta.id
o6ExtNum vhsTilePawPrints VHSv20120926 the extension number of the O6 detection tinyint 1   2 meta.id
o6ExtNum vhsTilePawPrints VHSv20130417 the extension number of the O6 detection tinyint 1   2 meta.id
o6ExtNum vhsTilePawPrints VHSv20140409 the extension number of the O6 detection tinyint 1   2 meta.id
o6ExtNum vhsTilePawPrints VHSv20150108 the extension number of the O6 detection tinyint 1   2 meta.id
o6ExtNum vhsTilePawPrints, vhsTilePawTDOnly VHSDR1 the extension number of the O6 detection tinyint 1   2 meta.id
o6ExtNum videoTilePawPrints VIDEODR3 the extension number of the O6 detection tinyint 1   2 meta.id
o6ExtNum videoTilePawPrints VIDEODR4 the extension number of the O6 detection tinyint 1   2 meta.id
o6ExtNum videoTilePawPrints VIDEOv20111208 the extension number of the O6 detection tinyint 1   2 meta.id
o6ExtNum videoTilePawPrints, videoTilePawTDOnly VIDEODR2 the extension number of the O6 detection tinyint 1   2 meta.id
o6ExtNum vikingTilePawPrints VIKINGDR3 the extension number of the O6 detection tinyint 1   2 meta.id
o6ExtNum vikingTilePawPrints VIKINGDR4 the extension number of the O6 detection tinyint 1   2 meta.id
o6ExtNum vikingTilePawPrints VIKINGv20110714 the extension number of the O6 detection int 4   -99999999 meta.id
o6ExtNum vikingTilePawPrints VIKINGv20111019 the extension number of the O6 detection tinyint 1   2 meta.id
o6ExtNum vikingTilePawPrints VIKINGv20130417 the extension number of the O6 detection tinyint 1   2 meta.id
o6ExtNum vikingTilePawPrints VIKINGv20140402 the extension number of the O6 detection tinyint 1   2 meta.id
o6ExtNum vikingTilePawPrints VIKINGv2