Home | Overview | Browser | Access | Login | Cookbook 
  VSA logo

Glossary of VSA attributes

This Glossary alphabetically lists all attributes used in the VSAv20150413 database(s) held in the VSA. If you would like to have more information about the schema tables please use the VSAv20150413 Schema Browser (other Browser versions).
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

E

NameSchema TableDatabaseDescriptionTypeLengthUnitDefault ValueUnified Content Descriptor
E24umMag spitzer_smcSource SPITZER The SPITZER E24μm band magnitude. real 4 mag    
E3_6umMag spitzer_smcSource SPITZER The SPITZER E3.6μm band magnitude. real 4 mag    
E4_5umMag spitzer_smcSource SPITZER The SPITZER E4.5μm band magnitude. real 4 mag    
E5_8umMag spitzer_smcSource SPITZER The SPITZER E5.8μm band magnitude. real 4 mag    
E70umMag spitzer_smcSource SPITZER The SPITZER E70μm band magnitude. real 4 mag    
E8_0umMag spitzer_smcSource SPITZER The SPITZER E8.0μm band magnitude. real 4 mag    
e_Ap35mag_I denisDR3Source DENIS Error in I band mag from 3.5" aperture float 8 mag    
e_Ap35mag_J denisDR3Source DENIS Error in J band mag from 3.5" aperture float 8 mag    
e_Ap35mag_K denisDR3Source DENIS Error in K band mag from 3.5" aperture float 8 mag    
e_Ap45mag_I denisDR3Source DENIS Error in I band mag from 4.5" aperture float 8 mag    
e_Ap45mag_J denisDR3Source DENIS Error in J band mag from 4.5" aperture float 8 mag    
e_Ap45mag_K denisDR3Source DENIS Error in K band mag from 4.5" aperture float 8 mag    
e_Ap55mag_I denisDR3Source DENIS Error in I band mag from 5.5" aperture float 8 mag    
e_Ap55mag_J denisDR3Source DENIS Error in J band mag from 5.5" aperture float 8 mag    
e_Ap55mag_K denisDR3Source DENIS Error in K band mag from 5.5" aperture float 8 mag    
e_Apc15mag_I denisDR3Source DENIS I band mag error in 1.5" corr. aperture float 8 mag    
e_Apc15mag_J denisDR3Source DENIS J band mag error in 1.5" corr. aperture float 8 mag    
e_Apc15mag_K denisDR3Source DENIS K band mag error in 1.5" corr. aperture float 8 mag    
e_Apc25mag_I denisDR3Source DENIS I band mag error in 2.5" corr. aperture float 8 mag    
e_Apc25mag_J denisDR3Source DENIS J band mag error in 2.5" corr. aperture float 8 mag    
e_Apc25mag_K denisDR3Source DENIS K band mag error in 2.5" corr. aperture float 8 mag    
e_Apc35mag_I denisDR3Source DENIS I band mag error in 3.5" corr. aperture float 8 mag    
e_Apc35mag_J denisDR3Source DENIS J band mag error in 3.5" corr. aperture float 8 mag    
e_Apc35mag_K denisDR3Source DENIS K band mag error in 3.5" corr. aperture float 8 mag    
e_BbMag combo17CDFSSource COMBO17 mean error (1-sigma) of BbMag real 4 mag    
e_BF_D combo17CDFSSource COMBO17 mean error (1-sigma) of BF_D float 8      
e_BF_F combo17CDFSSource COMBO17 mean error (1-sigma) of BF_F float 8      
e_BF_S combo17CDFSSource COMBO17 mean error (1-sigma) of BF_S float 8      
e_BjMag combo17CDFSSource COMBO17 mean error (1-sigma) of BjMag real 4 mag    
e_Bmag mcps_lmcSource, mcps_smcSource MCPS The 1σ error in Bmag real 4      
e_DEcs nvssSource NVSS Mean error on Dec real 4 arcsec   stat.error
e_Fitmag_I denisDR3Source DENIS Magnitude error in I band from PSF fit float 8 mag    
e_Fitmag_J denisDR3Source DENIS Magnitude error in J band from PSF fit float 8 mag    
e_Fitmag_K denisDR3Source DENIS Magnitude error in K band from PSF fit float 8 mag    
e_gsMag combo17CDFSSource COMBO17 mean error (1-sigma) of gsMag real 4 mag    
e_Hmag mcps_lmcSource, mcps_smcSource MCPS The 1σ error in Hmag real 4      
e_IF_D combo17CDFSSource COMBO17 mean error (1-sigma) of IF_D float 8      
e_Imag mcps_lmcSource, mcps_smcSource MCPS The 1σ error in Imag magnitude real 4      
e_Jmag mcps_lmcSource, mcps_smcSource MCPS The 1σ error in Jmag real 4      
e_Kmag mcps_lmcSource, mcps_smcSource MCPS The 1σ error in Kmag real 4      
e_majAxis nvssSource NVSS Mean error on majAxis real 4 arcsec   stat.error
e_MC_z combo17CDFSSource COMBO17 mean error (1-sigma) of MC_z real 4      
e_MC_z2 combo17CDFSSource COMBO17 mean error (1-sigma) of MC_z2 real 4      
e_minAxis nvssSource NVSS Mean error on minAxis real 4 arcsec   stat.error
e_PA nvssSource NVSS Mean error on PA real 4 degrees   stat.error
e_polFlux nvssSource NVSS Mean error on polFlux real 4 mJy   stat.error
e_polPA nvssSource NVSS Mean error on polPA real 4 mJy   stat.error
e_RAs nvssSource NVSS Mean error on RA real 4 s   stat.error
e_RF_D combo17CDFSSource COMBO17 mean error (1-sigma) of RF_D float 8      
e_RF_E combo17CDFSSource COMBO17 mean error (1-sigma) of RF_E float 8      
e_RF_F combo17CDFSSource COMBO17 mean error (1-sigma) of RF_F float 8      
e_RF_G combo17CDFSSource COMBO17 mean error (1-sigma) of RF_G float 8      
e_RF_S combo17CDFSSource COMBO17 mean error (1-sigma) of RF_S float 8      
e_Rmag combo17CDFSSource COMBO17 mean error (1-sigma) of Rmag real 4 mag    
e_rsMag combo17CDFSSource COMBO17 mean error (1-sigma) of rsMag real 4 mag    
e_S14 nvssSource NVSS Mean error on S14 real 4 mJy   stat.error
e_S145Mag combo17CDFSSource COMBO17 mean error (1-sigma) of S145Mag real 4 mag    
e_S280Mag combo17CDFSSource COMBO17 mean error (1-sigma) of S280Mag real 4 mag    
e_score twomass_xsc 2MASS extended score: 1(extended) < e_score < 2(point-like). real 4     meta.code
e_UbMag combo17CDFSSource COMBO17 mean error (1-sigma) of UbMag real 4 mag    
e_UF_F combo17CDFSSource COMBO17 mean error (1-sigma) of UF_F float 8      
e_UF_G combo17CDFSSource COMBO17 mean error (1-sigma) of UF_G float 8      
e_UF_S combo17CDFSSource COMBO17 mean error (1-sigma) of UF_S float 8      
e_UjMag combo17CDFSSource COMBO17 mean error (1-sigma) of UjMag real 4 mag    
e_Umag mcps_lmcSource, mcps_smcSource MCPS The 1σ error in Umag real 4      
e_usMag combo17CDFSSource COMBO17 mean error (1-sigma) of usMag real 4 mag    
e_VbMag combo17CDFSSource COMBO17 mean error (1-sigma) of VbMag real 4 mag    
e_VF_D combo17CDFSSource COMBO17 mean error (1-sigma) of VF_D float 8      
e_VjMag combo17CDFSSource COMBO17 mean error (1-sigma) of VjMag real 4 mag    
e_Vmag mcps_lmcSource, mcps_smcSource MCPS The 1σ error in Vmag real 4      
e_W420F_E combo17CDFSSource COMBO17 mean error (1-sigma) of W420F_E float 8      
e_W462F_E combo17CDFSSource COMBO17 mean error (1-sigma) of W462F_E float 8      
e_W485F_D combo17CDFSSource COMBO17 mean error (1-sigma) of W485F_D float 8      
e_W518F_E combo17CDFSSource COMBO17 mean error (1-sigma) of W518F_E float 8      
e_W571F_D combo17CDFSSource COMBO17 mean error (1-sigma) of W571F_D float 8      
e_W571F_E combo17CDFSSource COMBO17 mean error (1-sigma) of W571F_E float 8      
e_W571F_S combo17CDFSSource COMBO17 mean error (1-sigma) of W571F_S float 8      
e_W604F_E combo17CDFSSource COMBO17 mean error (1-sigma) of W604F_E float 8      
e_W646F_D combo17CDFSSource COMBO17 mean error (1-sigma) of W646F_D float 8      
e_W696F_E combo17CDFSSource COMBO17 mean error (1-sigma) of W696F_E float 8      
e_W753F_E combo17CDFSSource COMBO17 mean error (1-sigma) of W753F_E float 8      
e_W815F_E combo17CDFSSource COMBO17 mean error (1-sigma) of W815F_E float 8      
e_W815F_G combo17CDFSSource COMBO17 mean error (1-sigma) of W815F_G float 8      
e_W815F_S combo17CDFSSource COMBO17 mean error (1-sigma) of W815F_S float 8      
e_W856F_D combo17CDFSSource COMBO17 mean error (1-sigma) of W856F_D float 8      
e_W914F_D combo17CDFSSource COMBO17 mean error (1-sigma) of W914F_D float 8      
e_W914F_E combo17CDFSSource COMBO17 mean error (1-sigma) of W914F_E float 8      
ebmvMed MultiframeDetector VHSDR1 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VHSDR2 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VHSDR3 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VHSv20120926 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VHSv20130417 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VHSv20140409 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VHSv20150108 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VIDEODR2 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VIDEODR3 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VIDEODR4 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VIDEOv20111208 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VIKINGDR2 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VIKINGDR3 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VIKINGDR4 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VIKINGv20110714 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VIKINGv20111019 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VIKINGv20130417 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VIKINGv20140402 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VIKINGv20150421 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VMCDR1 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VMCDR2 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VMCDR3 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VMCv20110816 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VMCv20110909 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VMCv20120126 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VMCv20121128 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VMCv20130304 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VMCv20130805 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VMCv20140428 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VMCv20140903 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VMCv20150309 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VSAQC Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VVVDR1 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VVVDR2 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed MultiframeDetector VVVv20110718 Median modified E(B-V) {catalogue extension keyword:  EBMVMED} real 4   -0.9999995e9  
ebmvMed ultravistaMultiframeDetector, vhsMultiframeDetector, videoMultiframeDetector, vikingMultiframeDetector, vmcMultiframeDetector, vvvMultiframeDetector VSAQC Median modified E(B-V) real 4   -0.9999995e9  
eBV svNgc253Source SVNGC253v20100429 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9  
eBV ultravistaSource ULTRAVISTAv20100429 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9  
eBV vhsSource VHSDR1 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9  
eBV vhsSource VHSDR2 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9  
eBV vhsSource VHSDR3 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV vhsSource VHSv20120926 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV vhsSource VHSv20130417 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV vhsSource VHSv20140409 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV vhsSource VHSv20150108 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV videoSource VIDEODR2 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9  
eBV videoSource VIDEODR3 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV videoSource VIDEODR4 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV videoSource VIDEOv20100513 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9  
eBV videoSource VIDEOv20111208 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9  
eBV vikingSource VIKINGDR2 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9  
eBV vikingSource VIKINGDR3 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV vikingSource VIKINGDR4 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV vikingSource VIKINGv20110714 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9  
eBV vikingSource VIKINGv20111019 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9  
eBV vikingSource VIKINGv20130417 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV vikingSource VIKINGv20140402 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
eBV vikingSource VIKINGv20150421 The galactic dust extinction value measured from the Schlegel, Finkbeiner & Davis (1998) maps. This uses the correction given in Bonifacio, Monai & Beers (2000). This correction reduces the extinction value in regions of high extinction (E(B-V)>0.1) real 4   -0.9999995e9 phys.absorption.gal
ECCENT grs_ngpSource, grs_ranSource, grs_sgpSource TWODFGRS Eccentricity (e) e*200 = 200*(((sxx-syy)**2 + 4sxy**2)**0.5)/(sxx + syy) real 4      
eFlag rosat_bsc, rosat_fsc ROSAT source extended beyond SASS extraction radius varchar 1     meta.code
eHKs vvvBulge3DExtinctVals EXTINCT E(H-Ks) calculated from the stellar population model at distance r real 4 mag -0.9999995e9 phys.absorption.gal
eHKsErr vvvBulge3DExtinctVals EXTINCT Error on E(H-Ks) calculated from the stellar population model at distance r real 4 mag -0.9999995e9 star.error
eJKs vvvBulge3DExtinctVals EXTINCT E(J-Ks) calculated from the stellar population model at distance r real 4 mag -0.9999995e9 phys.absorption.gal
eJKsErr vvvBulge3DExtinctVals EXTINCT Error on E(J-Ks) calculated from the stellar population model at distance r real 4 mag -0.9999995e9 star.error
elat allwise_sc WISE Ecliptic latitude computed from the non-moving source fit equatorial position. CAUTION: This coordinate should not be used as an astrometric reference. float 8 deg    
elat wise_allskysc WISE Ecliptic latitude. CAUTION: This coordinate should not be used as an astrometric reference. float 8 degrees    
elat wise_prelimsc WISE Ecliptic latitude. CAUTION: This coordinate should not be used as an astrometric reference float 8 degrees    
ell svNgc253Detection SVNGC253v20100429 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell svOrionDetection SVORIONv20100429 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell ultravistaDetection ULTRAVISTAv20100429 1-b/a, where a/b=semi-major/minor axes (SE: THETA_IMAGE) {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vhsDetection VHSDR1 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vhsDetection VHSDR2 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vhsDetection VHSDR3 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vhsDetection VHSv20120926 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vhsDetection VHSv20130417 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vhsDetection VHSv20140409 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vhsDetection VHSv20150108 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell videoDetection VIDEODR2 1-b/a, where a/b=semi-major/minor axes (SE: THETA_IMAGE) {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell videoDetection VIDEODR3 1-b/a, where a/b=semi-major/minor axes (SE: THETA_IMAGE) {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell videoDetection VIDEODR4 1-b/a, where a/b=semi-major/minor axes (SE: THETA_IMAGE) {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell videoDetection VIDEOv20100513 1-b/a, where a/b=semi-major/minor axes (SE: THETA_IMAGE) {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell videoDetection VIDEOv20111208 1-b/a, where a/b=semi-major/minor axes (SE: THETA_IMAGE) {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vikingDetection VIKINGDR2 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vikingDetection VIKINGDR3 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vikingDetection VIKINGDR4 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vikingDetection VIKINGv20110714 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vikingDetection VIKINGv20111019 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vikingDetection VIKINGv20130417 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vikingDetection VIKINGv20140402 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vikingDetection VIKINGv20150421 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vmcDetection VMCDR1 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vmcDetection VMCDR2 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vmcDetection VMCDR3 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vmcDetection VMCv20110816 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vmcDetection VMCv20110909 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vmcDetection VMCv20120126 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vmcDetection VMCv20121128 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vmcDetection VMCv20130304 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vmcDetection VMCv20130805 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vmcDetection VMCv20140428 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vmcDetection VMCv20140903 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vmcDetection VMCv20150309 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vvvDetection VVVDR1 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vvvDetection VVVDR2 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vvvDetection, vvvListRemeasurement VVVv20100531 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ell vvvListRemeasurement VVVv20110718 1-b/a, where a/b=semi-major/minor axes {catalogue TType keyword: Ellipticity} real 4     src.ellipticity
ellfit_flg twomass_xsc 2MASS ellipse fitting contamination flag. smallint 2     meta.code
ELLIPTICITY mgcDetection MGC 1 - B_IMAGE/A_IMAGE real 4      
elon allwise_sc WISE Ecliptic longitude computed from the non-moving source fit equatorial position. CAUTION: This coordinate should not be used as an astrometric reference. float 8 deg    
elon wise_allskysc WISE Ecliptic longitude. CAUTION: This coordinate should not be used as an astrometric reference. float 8 degrees    
elon wise_prelimsc WISE Ecliptic longitude. CAUTION: This coordinate should not be used as an astrometric reference float 8 degrees    
endDate AstrCalVers SVNGC253v20100429 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers SVORIONv20100429 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers ULTRAVISTAv20100429 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VHSDR1 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VHSDR2 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VHSDR3 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VHSv20120926 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VHSv20130417 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VHSv20150108 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VIDEODR2 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VIDEODR3 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VIDEODR4 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VIDEOv20100513 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VIDEOv20111208 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VIKINGDR2 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VIKINGDR3 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VIKINGDR4 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VIKINGv20110714 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VIKINGv20111019 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VIKINGv20130417 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VIKINGv20150421 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VMCDR1 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VMCDR3 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VMCv20110816 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VMCv20110909 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VMCv20120126 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VMCv20121128 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VMCv20130304 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VMCv20130805 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VMCv20140428 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VMCv20140903 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VMCv20150309 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VSAQC MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VVVDR1 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VVVDR2 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VVVv20100531 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate AstrCalVers VVVv20110718 MJD of the end time for this version of the calibration float 8 Julian days   time.epoch
endDate PhotCalVers SVNGC253v20100429 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers SVORIONv20100429 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers ULTRAVISTAv20100429 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VHSDR1 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VHSDR2 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VHSDR3 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VHSv20120926 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VHSv20130417 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VHSv20150108 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VIDEODR2 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VIDEODR3 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VIDEODR4 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VIDEOv20100513 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VIDEOv20111208 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VIKINGDR2 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VIKINGDR3 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VIKINGDR4 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VIKINGv20110714 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VIKINGv20111019 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VIKINGv20130417 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VIKINGv20150421 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VMCDR1 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VMCDR3 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VMCv20110816 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VMCv20110909 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VMCv20120126 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VMCv20121128 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VMCv20130304 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VMCv20130805 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VMCv20140428 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VMCv20140903 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VMCv20150309 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VSAQC Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VVVDR1 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VVVDR2 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VVVv20100531 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
endDate PhotCalVers VVVv20110718 Date time of end time for this version of the calibration (MM-DD-YYYY) datetime 8 MM-DD-YYYY 12-31-9999 time.epoch
EP_1_FLUX twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 1 flux real 4 erg/cm**2/s    
EP_1_FLUX_ERR twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 1 flux error
EP_1_FLUX_ERR = SQRT ( 1.0 / SUM ( 1 / ca_1_FLUX_ERR2 )), where ca = PN, M1, M2
real 4 erg/cm**2/s    
EP_2_FLUX twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 2 flux real 4 erg/cm**2/s    
EP_2_FLUX_ERR twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 2 flux error
EP_2_FLUX_ERR = SQRT ( 1.0 / SUM ( 1 / ca_2_FLUX_ERR2 )), where ca = PN, M1, M2
real 4 erg/cm**2/s    
EP_3_FLUX twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 3 flux real 4 erg/cm**2/s    
EP_3_FLUX_ERR twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 3 flux error
EP_3_FLUX_ERR = SQRT ( 1.0 / SUM ( 1 / ca_3_FLUX_ERR2 )), where ca = PN, M1, M2
real 4 erg/cm**2/s    
EP_4_FLUX twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 4 flux real 4 erg/cm**2/s    
EP_4_FLUX_ERR twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 4 flux error
EP_4_FLUX_ERR = SQRT ( 1.0 / SUM ( 1 / ca_4_FLUX_ERR2 )), where ca = PN, M1, M2
real 4 erg/cm**2/s    
EP_5_FLUX twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 5 flux real 4 erg/cm**2/s    
EP_5_FLUX_ERR twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 5 flux error
EP_5_FLUX_ERR = SQRT ( 1.0 / SUM ( 1 / ca_5_FLUX_ERR2 )), where ca = PN, M1, M2
real 4 erg/cm**2/s    
EP_8_CTS twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM Combined band source counts real 4 counts    
EP_8_CTS_ERR twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM Combined band source counts 1 σ error real 4 counts    
EP_8_DET_ML twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 8 Maximum likelihood real 4      
EP_8_FLUX twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 8 flux real 4 erg/cm**2/s    
EP_8_FLUX_ERR twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 8 flux error
EP_8_FLUX_ERR = SQRT ( 1.0 / SUM ( 1 / ca_8_FLUX_ERR2 )), where ca = PN, M1, M2
real 4 erg/cm**2/s    
EP_8_RATE twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 8 Count rates real 4 counts/s    
EP_8_RATE_ERR twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 8 Count rates error real 4 counts/s    
EP_9_DET_ML twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 9 Maximum likelihood real 4      
EP_9_FLUX twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 9 flux real 4 erg/cm**2/s    
EP_9_FLUX_ERR twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 9 flux error
EP_9_FLUX_ERR = SQRT ( 1.0 / SUM ( 1 / ca_9_FLUX_ERR2 )), where ca = PN, M1, M2
real 4 erg/cm**2/s    
EP_9_RATE twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 9 Count rates real 4 counts/s    
EP_9_RATE_ERR twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM EP band 9 Count rates error real 4 counts/s    
EP_CHI2PROB twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 XMM The Chi² probability (based on the null hypothesis) that the source as detected by any of the cameras, is constant. The minimum value of the available camera probabilities (PN_CHI2PROB, M1_CHI2PROB, M2_CHI2PROB) is given. real 4      
EP_CHI2PROB xmm3dr4 XMM The Chi² probability (based on the null hypothesis) that the source as detected by any of the cameras, is constant. The minimum value of the available camera probabilities (PN_CHI2PROB, M1_CHI2PROB, M2_CHI2PROB) is given. float 8      
EP_DIST_NN twoxmmi_dr3_v1_0 XMM The distance to the nearest neighbouring detection.
An internal threshold of 6 arseconds (before positional fitting) is used for splitting a source into two.
real 4 arcsec    
EP_EXTENT twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM The Extent radius of a source detected as extended. real 4 arcsec    
EP_EXTENT_ERR twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM The Extent error of a source detected as extended. real 4 arcsec    
EP_EXTENT_ML twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM The extent likelihood is the likelihood of the detection being extended as given by P = - ln (EXTENT_ML) , where P is the probability the extent occurring by chance. real 4      
EP_FLAG twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0 XMM EPIC flag string made of the flags 1 - 12 (counted from left to right), where flag 10 is not used: it combines the PN, M1, and M2 flags, that is, a flag is set in EP_FLAG if at least one of the camera-dependent flags is set. varchar 12      
EP_FLAG xmm3dr4 XMM EPIC flag string made of the flags 1 - 12 (counted from left to right), where flag 10 is not used: it combines the PN, M1, and M2 flags, that is, a flag is set in EP_FLAG if at least one of the camera-dependent flags is set. varchar 50      
EP_HR1 twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM The EP hardness ratio between the bands 1 & 2
In the case where the rate in one band is 0.0 (i.e., too faint to be detected in this band) the hardness ratio will be -1 or +1 which is only a lower or upper limit, respectively.
real 4      
EP_HR1_ERR twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM The 1 σ error of the EP hardness ratio between the bands 1 & 2 real 4      
EP_HR2 twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM The EP hardness ratio between the bands 2 & 3
In the case where the rate in one band is 0.0 (i.e., too faint to be detected in this band) the hardness ratio will be -1 or +1 which is only a lower or upper limit, respectively.
real 4      
EP_HR2_ERR twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM The 1 σ error of the EP hardness ratio between the bands 2 & 3 real 4      
EP_HR3 twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM The EP hardness ratio between the bands 3 & 4
In the case where the rate in one band is 0.0 (i.e., too faint to be detected in this band) the hardness ratio will be -1 or +1 which is only a lower or upper limit, respectively.
real 4      
EP_HR3_ERR twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM The 1 σ error of the EP hardness ratio between the bands 3 & 4 real 4      
EP_HR4 twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM The EP hardness ratio between the bands 4 & 5
In the case where the rate in one band is 0.0 (i.e., too faint to be detected in this band) the hardness ratio will be -1 or +1 which is only a lower or upper limit, respectively.
real 4      
EP_HR4_ERR twoxmm, twoxmm_v1_2, twoxmmi_dr3_v1_0, xmm3dr4 XMM The 1 σ error of the EP hardness ratio between the bands 4 & 5 real 4      
EP_OFFAX twoxmmi_dr3_v1_0, xmm3dr4 XMM The EP offaxis angle (the distance between the detection position and the onaxis position on the respective detector).
The offaxis angle for a camera can be larger than 15 arcminutes when the detection is located outside the FOV of that camera.
real 4 arcmin    
EP_ONTIME twoxmmi_dr3_v1_0, xmm3dr4 XMM The EP ontime value (the total good exposure time (after GTI filtering) of the CCD where the detection is positioned).
If a source position falls into CCD gaps or outside of the detector it will have a NULL given.
real 4 s    
Epoch denisDR3Source DENIS Epoch of USNOA2.0 nearest match float 8 yr    
epoch RequiredMergeLogMultiEpoch VSAQC Epoch number in MergeLog table tinyint 1      
epoch sage_lmcIracSource, sage_lmcMips160Source, sage_lmcMips24Source, sage_lmcMips70Source SPITZER Character string identifier for epoch of source varchar 16      
epoch sage_smcIRACv1_5Source SPITZER Character string identifier for the epoch of the observation of the source, i.e. "epoch 1", "epoch 2", "epoch 1+2",... varchar 16      
epoch ukirtFSstars SVNGC253v20100429 The epoch of columns ra and dec real 4 years -0.9999995e9  
epoch ukirtFSstars SVORIONv20100429 The epoch of columns ra and dec real 4 years -0.9999995e9  
epoch ukirtFSstars ULTRAVISTAv20100429 The epoch of columns ra and dec real 4 years -0.9999995e9  
epoch ukirtFSstars VIDEOv20100513 The epoch of columns ra and dec real 4 years -0.9999995e9  
epoch ukirtFSstars VIKINGv20110714 The epoch of columns ra and dec real 4 years -0.9999995e9  
epoch ukirtFSstars VVVv20100531 The epoch of columns ra and dec real 4 years -0.9999995e9  
epoch ultravistaSourceRemeasurement ULTRAVISTAv20100429 Epoch of position measurement float 8 Years -0.9999995e9 time.epoch
epoch vhsSourceRemeasurement VHSDR1 Epoch of position measurement float 8 Years -0.9999995e9 time.epoch
epoch videoSourceRemeasurement VIDEOv20100513 Epoch of position measurement float 8 Years -0.9999995e9 time.epoch
epoch videoVariability VIDEODR2 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch videoVariability VIDEODR3 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch videoVariability VIDEODR4 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch videoVariability VIDEOv20100513 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch videoVariability VIDEOv20111208 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vikingSourceRemeasurement VIKINGv20110714 Epoch of position measurement float 8 Years -0.9999995e9 time.epoch
epoch vikingSourceRemeasurement VIKINGv20111019 Epoch of position measurement float 8 Years -0.9999995e9 time.epoch
epoch vikingVariability VIKINGDR2 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vikingVariability VIKINGDR3 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vikingVariability VIKINGDR4 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vikingVariability VIKINGv20110714 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vikingVariability VIKINGv20111019 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vikingVariability VIKINGv20130417 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vikingVariability VIKINGv20140402 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vikingVariability VIKINGv20150421 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vmcSourceRemeasurement VMCv20110816 Epoch of position measurement float 8 Years -0.9999995e9 time.epoch
epoch vmcSourceRemeasurement VMCv20110909 Epoch of position measurement float 8 Years -0.9999995e9 time.epoch
epoch vmcVariability VMCDR1 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vmcVariability VMCDR2 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vmcVariability VMCDR3 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vmcVariability VMCv20110816 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vmcVariability VMCv20110909 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vmcVariability VMCv20120126 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vmcVariability VMCv20121128 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vmcVariability VMCv20130304 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vmcVariability VMCv20130805 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vmcVariability VMCv20140428 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vmcVariability VMCv20140903 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vmcVariability VMCv20150309 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vvvSourceRemeasurement VVVv20100531 Epoch of position measurement float 8 Years -0.9999995e9 time.epoch
epoch vvvSourceRemeasurement VVVv20110718 Epoch of position measurement float 8 Years -0.9999995e9 time.epoch
epoch vvvVariability VVVDR1 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vvvVariability VVVDR2 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vvvVariability VVVv20100531 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epoch vvvVariability VVVv20110718 Epoch of measurement float 8 Years   time.epoch
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
epochFrameType Programme VHSDR1 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VHSDR2 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VHSDR3 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VHSv20120926 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VHSv20130417 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VHSv20150108 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VIDEODR2 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VIDEODR3 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VIDEODR4 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VIDEOv20100513 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VIDEOv20111208 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VIKINGDR2 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VIKINGDR3 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VIKINGDR4 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VIKINGv20110714 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VIKINGv20111019 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VIKINGv20130417 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VIKINGv20150421 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VMCDR1 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VMCDR3 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VMCv20110816 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VMCv20110909 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VMCv20120126 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VMCv20121128 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VMCv20130304 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VMCv20130805 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VMCv20140428 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VMCv20140903 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VMCv20150309 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VSAQC The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VVVDR1 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VVVDR2 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VVVv20100531 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochFrameType Programme VVVv20110718 The frame type to be used for each epoch (stack, tile) varchar 16   NONE  
epochMin vmcEclipsingBinaryVariables VMCv20140903 Epoch of minimum light; EROS, (HJD-2,400,000) determined by GRATIS in EROS R passband; OGLE (JD-2,400,000) from the OGLE III catalogue. {catalogue TType keyword: EPOCH_MIN} real 4 day   time.epoch
epochMin vmcEclipsingBinaryVariables VMCv20150309 Epoch of minimum light; EROS, (HJD-2,400,000) determined by GRATIS in EROS R passband; OGLE (JD-2,400,000) from the OGLE III catalogue. {catalogue TType keyword: EPOCH_MIN} real 4 day   time.epoch
epochTolerance Programme VSAQC Minimum separation of epochs for proper motion calculation real 4 days -0.9999995e9 ??
equinox Multiframe SVNGC253v20100429 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe SVORIONv20100429 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe ULTRAVISTAv20100429 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VHSDR1 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VHSDR2 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VHSDR3 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VHSv20120926 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VHSv20130417 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VHSv20140409 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VHSv20150108 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VIDEODR2 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VIDEODR3 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VIDEODR4 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VIDEOv20100513 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VIDEOv20111208 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VIKINGDR2 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VIKINGDR3 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VIKINGDR4 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VIKINGv20110714 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VIKINGv20111019 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VIKINGv20130417 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VIKINGv20140402 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VIKINGv20150421 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VMCDR1 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VMCDR2 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VMCDR3 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VMCv20110816 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VMCv20110909 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VMCv20120126 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VMCv20121128 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VMCv20130304 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VMCv20130805 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VMCv20140428 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VMCv20140903 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VMCv20150309 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VSAQC Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VVVDR1 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VVVDR2 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VVVv20100531 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox Multiframe VVVv20110718 Equinox of object position (Standard FK5) {image primary HDU keyword: EQUINOX} real 4 years -0.9999995e9 time.equinox
equinox ultravistaMultiframe, vhsMultiframe, videoMultiframe, vikingMultiframe, vmcMultiframe, vvvMultiframe VSAQC Equinox of object position (Standard FK5) real 4 years -0.9999995e9 time.equinox
erosid eros2LMCSource, eros2SMCSource, erosLMCSource, erosSMCSource EROS EROS star identification varchar 24      
err_ang twomass_psc 2MASS Position angle on the sky of the semi-major axis of the position uncertainty ellipse (East of North) smallint 2 degrees   pos.posAng
err_ang twomass_sixx2_psc 2MASS angle of error ellipse major axis (E of N) smallint 2 deg    
err_maj twomass_psc 2MASS Semi-major axis length of the one sigma position uncertainty ellipse real 4 arcsec   phys.angSize;src
err_maj twomass_sixx2_psc 2MASS major axis of 1-sigma error ellipse real 4 arcsec    
err_min twomass_psc 2MASS Semi-minor axis length of the one sigma position uncertainty ellipse real 4 arcsec   phys.angSize;src
err_min twomass_sixx2_psc 2MASS minor axis of 1-sigma error ellipse real 4 arcsec    
ERRA_IMAGE mgcDetection MGC Position error along major axis real 4 pixel    
ERRB_IMAGE mgcDetection MGC Position error along minor axis real 4 pixel    
errBits svNgc253Detection SVNGC253v20100429 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits svOrionDetection SVORIONv20100429 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits ultravistaDetection ULTRAVISTAv20100429 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
This uses the FLAGS attribute in SE. The individual bit flags that this can be decomposed into are as follows:
Bit FlagMeaning
1The object has neighbours, bright enough and close enough to significantly bias the MAG_AUTO photometry or bad pixels (more than 10% of photometry affected).
2The object was originally blended with another
4At least one pixel is saturated (or very close to)
8The object is truncated (too close to an image boundary)
16Object's aperture data are incomplete or corrupted
32Object's isophotal data are imcomplete or corrupted. This is an old flag inherited from SE v1.0, and is kept for compatability reasons. It doesn't have any consequence for the extracted parameters.
64Memory overflow occurred during deblending
128Memory overflow occurred during extraction

errBits vhsDetection VHSDR1 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vhsDetection VHSDR2 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vhsDetection VHSDR3 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vhsDetection VHSv20120926 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vhsDetection VHSv20130417 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vhsDetection VHSv20140409 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vhsDetection VHSv20150108 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits videoDetection VIDEODR2 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
This uses the FLAGS attribute in SE. The individual bit flags that this can be decomposed into are as follows:
Bit FlagMeaning
1The object has neighbours, bright enough and close enough to significantly bias the MAG_AUTO photometry or bad pixels (more than 10% of photometry affected).
2The object was originally blended with another
4At least one pixel is saturated (or very close to)
8The object is truncated (too close to an image boundary)
16Object's aperture data are incomplete or corrupted
32Object's isophotal data are imcomplete or corrupted. This is an old flag inherited from SE v1.0, and is kept for compatability reasons. It doesn't have any consequence for the extracted parameters.
64Memory overflow occurred during deblending
128Memory overflow occurred during extraction

errBits videoDetection VIDEODR3 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
This uses the FLAGS attribute in SE. The individual bit flags that this can be decomposed into are as follows:
Bit FlagMeaning
1The object has neighbours, bright enough and close enough to significantly bias the MAG_AUTO photometry or bad pixels (more than 10% of photometry affected).
2The object was originally blended with another
4At least one pixel is saturated (or very close to)
8The object is truncated (too close to an image boundary)
16Object's aperture data are incomplete or corrupted
32Object's isophotal data are imcomplete or corrupted. This is an old flag inherited from SE v1.0, and is kept for compatability reasons. It doesn't have any consequence for the extracted parameters.
64Memory overflow occurred during deblending
128Memory overflow occurred during extraction

errBits videoDetection VIDEODR4 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
This uses the FLAGS attribute in SE. The individual bit flags that this can be decomposed into are as follows:
Bit FlagMeaning
1The object has neighbours, bright enough and close enough to significantly bias the MAG_AUTO photometry or bad pixels (more than 10% of photometry affected).
2The object was originally blended with another
4At least one pixel is saturated (or very close to)
8The object is truncated (too close to an image boundary)
16Object's aperture data are incomplete or corrupted
32Object's isophotal data are imcomplete or corrupted. This is an old flag inherited from SE v1.0, and is kept for compatability reasons. It doesn't have any consequence for the extracted parameters.
64Memory overflow occurred during deblending
128Memory overflow occurred during extraction

errBits videoDetection VIDEOv20100513 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
This uses the FLAGS attribute in SE. The individual bit flags that this can be decomposed into are as follows:
Bit FlagMeaning
1The object has neighbours, bright enough and close enough to significantly bias the MAG_AUTO photometry or bad pixels (more than 10% of photometry affected).
2The object was originally blended with another
4At least one pixel is saturated (or very close to)
8The object is truncated (too close to an image boundary)
16Object's aperture data are incomplete or corrupted
32Object's isophotal data are imcomplete or corrupted. This is an old flag inherited from SE v1.0, and is kept for compatability reasons. It doesn't have any consequence for the extracted parameters.
64Memory overflow occurred during deblending
128Memory overflow occurred during extraction

errBits videoDetection VIDEOv20111208 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
This uses the FLAGS attribute in SE. The individual bit flags that this can be decomposed into are as follows:
Bit FlagMeaning
1The object has neighbours, bright enough and close enough to significantly bias the MAG_AUTO photometry or bad pixels (more than 10% of photometry affected).
2The object was originally blended with another
4At least one pixel is saturated (or very close to)
8The object is truncated (too close to an image boundary)
16Object's aperture data are incomplete or corrupted
32Object's isophotal data are imcomplete or corrupted. This is an old flag inherited from SE v1.0, and is kept for compatability reasons. It doesn't have any consequence for the extracted parameters.
64Memory overflow occurred during deblending
128Memory overflow occurred during extraction

errBits vikingDetection VIKINGDR2 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vikingDetection VIKINGDR3 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vikingDetection VIKINGDR4 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vikingDetection VIKINGv20110714 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vikingDetection VIKINGv20111019 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vikingDetection VIKINGv20130417 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vikingDetection VIKINGv20140402 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vikingDetection VIKINGv20150421 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vmcDetection VMCDR1 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vmcDetection VMCDR2 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vmcDetection VMCDR3 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vmcDetection VMCv20110816 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vmcDetection VMCv20110909 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vmcDetection VMCv20120126 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vmcDetection VMCv20121128 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vmcDetection VMCv20130304 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vmcDetection VMCv20130805 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vmcDetection VMCv20140428 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vmcDetection VMCv20140903 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vmcDetection VMCv20150309 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vvvDetection VVVDR1 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vvvDetection VVVDR2 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vvvDetection VVVv20100531 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
Apparently not actually an error bit flag, but a count of the number of zero confidence pixels in the default (2 arcsec diameter) aperture.
errBits vvvListRemeasurement VVVv20100531 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
errBits vvvListRemeasurement VVVv20110718 processing warning/error bitwise flags {catalogue TType keyword: Error_bit_flag} int 4     meta.code
errHr1 rosat_bsc, rosat_fsc ROSAT error of hardness ratio 1 float 8     stat.error
errHr2 rosat_bsc, rosat_fsc ROSAT error of hardness ratio 2 float 8     stat.error
ErrMB eros2LMCSource, eros2SMCSource, erosLMCSource, erosSMCSource EROS Error of mean magnitude in blue channel real 4      
ErrMR eros2LMCSource, eros2SMCSource, erosLMCSource, erosSMCSource EROS Error of mean magnitude in red channel real 4      
errP rosat_bsc ROSAT total positional error (1-sigma-radius; including 6" systematic error) tinyint 1 arcsec   stat.error
errP rosat_fsc ROSAT total positional error (1-sigma-radius; including 6" systematic error) smallint 2 arcsec   stat.error
errSrcCps rosat_bsc, rosat_fsc ROSAT error of source countrate, vignetting corrected real 4 counts/s   stat.error
esoDecMoon Multiframe SVNGC253v20100429 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe SVORIONv20100429 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe ULTRAVISTAv20100429 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VHSDR1 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VHSDR2 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VHSDR3 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VHSv20120926 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VHSv20130417 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VHSv20140409 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VHSv20150108 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VIDEODR2 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VIDEODR3 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VIDEODR4 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VIDEOv20100513 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VIDEOv20111208 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VIKINGDR2 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VIKINGDR3 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VIKINGDR4 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VIKINGv20110714 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VIKINGv20111019 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VIKINGv20130417 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VIKINGv20140402 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VIKINGv20150421 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VMCDR1 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VMCDR2 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VMCDR3 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VMCv20110816 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VMCv20110909 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VMCv20120126 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VMCv20121128 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VMCv20130304 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VMCv20130805 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VMCv20140428 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VMCv20140903 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VMCv20150309 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VSAQC Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VVVDR1 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VVVDR2 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VVVv20100531 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon Multiframe VVVv20110718 Declination of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON DEC} float 8   -0.9999995e9 pos.eq.dec;meta.main
esoDecMoon ultravistaMultiframe, vhsMultiframe, videoMultiframe, vikingMultiframe, vmcMultiframe, vvvMultiframe VSAQC Declination of the Moon (J2000) (deg) float 8   -0.9999995e9 pos.eq.dec;meta.main
esoGrade Multiframe VHSDR1 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VHSDR2 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VHSDR3 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VHSv20120926 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VHSv20130417 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VHSv20140409 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VHSv20150108 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VIDEODR2 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VIDEODR3 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VIDEODR4 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VIDEOv20111208 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VIKINGDR2 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VIKINGDR3 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VIKINGDR4 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VIKINGv20110714 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VIKINGv20111019 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VIKINGv20130417 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VIKINGv20140402 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VIKINGv20150421 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VMCDR1 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VMCDR2 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VMCDR3 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VMCv20110816 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VMCv20110909 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VMCv20120126 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VMCv20121128 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VMCv20130304 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VMCv20130805 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VMCv20140428 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VMCv20140903 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VMCv20150309 ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VSAQC ESO QC grade: 'A' if fully under constraints, 'B' if mostly (90%) under constraints, 'C' if out of constraints and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VVVDR1 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VVVDR2 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade Multiframe VVVv20110718 ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. {image primary HDU keyword: ESOGRADE} varchar 4   NONE ??
esoGrade ultravistaMultiframe, vhsMultiframe, videoMultiframe, vikingMultiframe, vmcMultiframe, vvvMultiframe VSAQC ESO QC grade: 'A' if fully under constrains, 'B' if mostly (90%) under constrains, 'C' if out of constrains and 'R' rejected. varchar 4   NONE ??
esoRaMoon Multiframe SVNGC253v20100429 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe SVORIONv20100429 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe ULTRAVISTAv20100429 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VHSDR1 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VHSDR2 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VHSDR3 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VHSv20120926 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VHSv20130417 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VHSv20140409 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VHSv20150108 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VIDEODR2 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VIDEODR3 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VIDEODR4 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VIDEOv20100513 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VIDEOv20111208 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VIKINGDR2 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VIKINGDR3 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VIKINGDR4 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VIKINGv20110714 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VIKINGv20111019 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VIKINGv20130417 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VIKINGv20140402 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VIKINGv20150421 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VMCDR1 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VMCDR2 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VMCDR3 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VMCv20110816 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VMCv20110909 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VMCv20120126 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VMCv20121128 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VMCv20130304 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VMCv20130805 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VMCv20140428 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VMCv20140903 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VMCv20150309 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VSAQC Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VVVDR1 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VVVDR2 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VVVv20100531 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon Multiframe VVVv20110718 Right ascension of the Moon (J2000) (deg) {image primary HDU keyword: HIERARCH ESO TEL MOON RA} float 8   -0.9999995e9 pos.eq.ra;meta.main
esoRaMoon ultravistaMultiframe, vhsMultiframe, videoMultiframe, vikingMultiframe, vmcMultiframe, vvvMultiframe VSAQC Right ascension of the Moon (J2000) (deg) float 8   -0.9999995e9 pos.eq.ra;meta.main
eta CurrentAstrometry SVNGC253v20100429 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry SVORIONv20100429 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry ULTRAVISTAv20100429 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VHSDR1 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VHSDR2 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VHSDR3 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VHSv20120926 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VHSv20130417 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VHSv20140409 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VHSv20150108 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VIDEODR2 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VIDEODR3 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VIDEODR4 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VIDEOv20100513 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VIDEOv20111208 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VIKINGDR2 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VIKINGDR3 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VIKINGDR4 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VIKINGv20110714 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VIKINGv20111019 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VIKINGv20130417 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VIKINGv20140402 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VIKINGv20150421 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VMCDR1 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VMCDR2 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VMCDR3 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VMCv20110816 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VMCv20110909 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VMCv20120126 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VMCv20121128 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VMCv20130304 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VMCv20130805 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VMCv20140428 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VMCv20140903 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VMCv20150309 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VVVDR1 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VVVDR2 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VVVv20100531 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry VVVv20110718 SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta CurrentAstrometry, ultravistaCurrentAstrometry, vhsCurrentAstrometry, videoCurrentAstrometry, vikingCurrentAstrometry, vmcCurrentAstrometry, vvvCurrentAstrometry VSAQC SDSS system spherical co-ordinate 2 of device centre float 8 Degrees -0.9999995e9 pos
eta svNgc253Detection, svNgc253Source SVNGC253v20100429 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta svOrionDetection, svOrionSource SVORIONv20100429 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta ultravistaDetection, ultravistaSource, ultravistaSourceRemeasurement ULTRAVISTAv20100429 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vhsDetection VHSDR3 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vhsDetection VHSv20120926 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vhsDetection VHSv20130417 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vhsDetection VHSv20140409 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vhsDetection VHSv20150108 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vhsDetection, vhsSource, vhsSourceRemeasurement, vhsTilePawPrints VHSDR1 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vhsDetection, vhsTilePawPrints VHSDR2 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vhsTilePawTDOnly VHSDR1 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vhsTilePawTDOnly VHSDR2 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vhsTilePawTDOnly VHSDR3 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vhsTilePawTDOnly VHSv20120926 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vhsTilePawTDOnly VHSv20130417 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vhsTilePawTDOnly VHSv20140409 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vhsTilePawTDOnly VHSv20150108 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta videoDetection VIDEODR3 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta videoDetection VIDEODR4 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta videoDetection VIDEOv20111208 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta videoDetection, videoSource, videoTilePawPrints VIDEODR2 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta videoDetection, videoSourceRemeasurement VIDEOv20100513 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta videoTilePawTDOnly VIDEODR2 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta videoTilePawTDOnly VIDEODR3 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta videoTilePawTDOnly VIDEODR4 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta videoTilePawTDOnly VIDEOv20111208 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vikingDetection VIKINGDR3 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vikingDetection VIKINGDR4 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vikingDetection VIKINGv20111019 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vikingDetection VIKINGv20130417 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vikingDetection VIKINGv20140402 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vikingDetection VIKINGv20150421 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vikingDetection, vikingSource, vikingTilePawPrints VIKINGDR2 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vikingDetection, vikingSourceRemeasurement VIKINGv20110714 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vikingTilePawTDOnly VIKINGDR2 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vikingTilePawTDOnly VIKINGDR3 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vikingTilePawTDOnly VIKINGDR4 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vikingTilePawTDOnly VIKINGv20111019 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vikingTilePawTDOnly VIKINGv20130417 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vikingTilePawTDOnly VIKINGv20140402 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vikingTilePawTDOnly VIKINGv20150421 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vmcDetection VMCDR2 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vmcDetection VMCDR3 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vmcDetection VMCv20110909 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vmcDetection VMCv20120126 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vmcDetection VMCv20121128 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vmcDetection VMCv20130304 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vmcDetection VMCv20130805 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vmcDetection VMCv20140428 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vmcDetection VMCv20140903 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vmcDetection VMCv20150309 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vmcDetection, vmcSource, vmcSynopticSource, vmcTilePawPrints VMCDR1 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vmcDetection, vmcSourceRemeasurement VMCv20110816 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vmcTilePawTDOnly VMCDR1 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vmcTilePawTDOnly VMCDR2 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vmcTilePawTDOnly VMCDR3 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vmcTilePawTDOnly VMCv20110816 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vmcTilePawTDOnly VMCv20110909 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vmcTilePawTDOnly VMCv20120126 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vmcTilePawTDOnly VMCv20121128 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vmcTilePawTDOnly VMCv20130304 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vmcTilePawTDOnly VMCv20130805 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vmcTilePawTDOnly VMCv20140428 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vmcTilePawTDOnly VMCv20140903 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vmcTilePawTDOnly VMCv20150309 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vvvDetection VVVDR2 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vvvDetection, vvvListRemeasurement, vvvSourceRemeasurement VVVv20100531 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vvvDetection, vvvSource, vvvSynopticSource, vvvTilePawPrints VVVDR1 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vvvListRemeasurement VVVv20110718 SDSS system spherical co-ordinate 2 float 8 Degrees   pos
eta vvvTilePawTDOnly VVVDR1 SDSS system spherical co-ordinate 2 float 8 Degrees pos
eta vvvTilePawTDOnly VVVDR2 SDSS system spherical co-ordinate 2 float 8 Degrees pos
ETA_TYPE mgcGalaxyStruct MGC 2dFGRS Eta type real 4   -99.9  
evi vmcCepheidVariables VMCDR3 The dust extinction value E(V-I) {catalogue TType keyword: E(V-I)} real 4 mag -0.9999995e9 phys.absorption.gal
evi vmcCepheidVariables VMCv20121128 The dust extinction value E(V-I) {catalogue TType keyword: E(V-I)} real 4 mag -0.9999995e9 phys.absorption.gal
evi vmcCepheidVariables VMCv20140428 The dust extinction value E(V-I) {catalogue TType keyword: E(V-I)} real 4 mag -0.9999995e9 phys.absorption.gal
evi vmcCepheidVariables VMCv20140903 The dust extinction value E(V-I) {catalogue TType keyword: E(V-I)} real 4 mag -0.9999995e9 phys.absorption.gal
evi vmcCepheidVariables VMCv20150309 The dust extinction value E(V-I) {catalogue TType keyword: E(V-I)} real 4 mag -0.9999995e9 phys.absorption.gal
EXP_R spectra SIXDF R reference frame exposure time seconds real 4 seconds    
EXP_V spectra SIXDF V reference frame exposure time seconds real 4 seconds    
expAstErr videoVariability VIDEODR2 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9  
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr videoVariability VIDEODR3 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr videoVariability VIDEODR4 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr videoVariability VIDEOv20100513 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9  
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr videoVariability VIDEOv20111208 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9  
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vikingVariability VIKINGDR2 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9  
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vikingVariability VIKINGDR3 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vikingVariability VIKINGDR4 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vikingVariability VIKINGv20110714 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9  
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vikingVariability VIKINGv20111019 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9  
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vikingVariability VIKINGv20130417 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vikingVariability VIKINGv20140402 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vikingVariability VIKINGv20150421 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vmcVariability VMCDR1 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9  
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vmcVariability VMCDR2 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vmcVariability VMCDR3 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vmcVariability VMCv20110816 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9  
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vmcVariability VMCv20110909 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9  
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vmcVariability VMCv20120126 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9  
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vmcVariability VMCv20121128 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vmcVariability VMCv20130304 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vmcVariability VMCv20130805 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vmcVariability VMCv20140428 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vmcVariability VMCv20140903 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vmcVariability VMCv20150309 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vvvVariability VVVDR1 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vvvVariability VVVDR2 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9 stat.error
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vvvVariability VVVv20100531 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9  
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expAstErr vvvVariability VVVv20110718 Rms calculated from polynomial fit to minimum astrometric RMS as a function of magnitude real 4 arcsec -0.9999995e9  
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
expTime Multiframe SVNGC253v20100429 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe SVORIONv20100429 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe ULTRAVISTAv20100429 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VHSDR1 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VHSDR2 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VHSDR3 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VHSv20120926 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VHSv20130417 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VHSv20140409 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VHSv20150108 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VIDEODR2 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VIDEODR3 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VIDEODR4 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VIDEOv20100513 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VIDEOv20111208 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VIKINGDR2 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VIKINGDR3 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VIKINGDR4 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VIKINGv20110714 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VIKINGv20111019 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VIKINGv20130417 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VIKINGv20140402 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VIKINGv20150421 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VMCDR1 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VMCDR2 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VMCDR3 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VMCv20110816 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VMCv20110909 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VMCv20120126 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VMCv20121128 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VMCv20130304 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VMCv20130805 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VMCv20140428 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VMCv20140903 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VMCv20150309 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VSAQC Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VVVDR1 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VVVDR2 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VVVv20100531 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime Multiframe VVVv20110718 Integration time per exposure (corrected to ndit = 1) {image primary HDU keyword: EXPTIME} real 4 seconds -0.9999995e9 time.duration;obs.exposure
expTime rosat_bsc ROSAT exposure time smallint 2 sec   time.duration;obs.exposure
expTime rosat_fsc ROSAT exposure time int 4 sec   time.duration;obs.exposure
expTime ultravistaMultiframe, vhsMultiframe, videoMultiframe, vikingMultiframe, vmcMultiframe, vvvMultiframe VSAQC Integration time per exposure (corrected to ndit = 1) real 4 seconds -0.9999995e9 time.duration;obs.exposure
ext rosat_bsc, rosat_fsc ROSAT source extent smallint 2 arcsec   phys.angSize
ext_flg allwise_sc WISE Extended source flag. This is an integer flag, the value of which indicates whether or not the morphology of a source is consistent with the WISE point spread function in any band, or whether the source is associated with or superimposed on a previously known extended object from the 2MASS Extended Source Catalog (XSC). CAUTION: WISE profile-fit (w?mpro) and standard aperture (w?mag) measurements are optimized for point sources and will systematically underestimate the true flux of resolved objects. If a source entry has ext_flg>0, you may wish to examine the large aperture photometry, or the elliptical aperture photometry which are measured using areas that are scaled from 2MASS XSC morphologies. int 4      
The values of the ext_flg indicate the following conditions:
  • 0 - The source shape is consistent with a point-source and the source is not associated with or superimposed on a 2MASS XSC source
  • 1 - The profile-fit photometry goodness-of-fit, w?rchi2, is >3.0 in one or more bands.
  • 2 - The source falls within the extrapolated isophotal footprint of a 2MASS XSC source.
  • 3 - The profile-fit photometry goodness-of-fit,w?rchi2, is >3.0 in one or more bands, and the source falls within the extrapolated isophotal footprint of a 2MASS XSC source.
  • 4 - The source position falls within 5" of a 2MASS XSC source.
  • 5 - The profile-fit photometry goodness-of-fit,w?rchi2, is >3.0 in one or more bands, and the source position falls within 5" of a 2MASS XSC source.
ext_flg wise_allskysc WISE Extended source flag.
This flag indicates whether or not the morphology of a source is consistent with the WISE point spread function in any band or whether the source is associated with or superimposed on a previously known extended object from the 2MASS Extended Source Catalog (XSC): 0 - The source shape is consistent with a point-source; 1 - The source shape is not consistent with a point-source; 2 - The source falls within the extrapolated isophotal footprint of a 2MASS XSC source; 3 - The profile-fit photometry goodness-of-fit, w?rchi2, is >3.0 in one or more bands, and The source falls within the extrapolated isophotal footprint of a 2MASS XSC source; 4 - The source position falls within 5" of a 2MASS XSC source; 5 - The profile-fit photometry goodness-of-fit, w?rchi2, is >3.0 in one or more bands, and the source position falls within 5" of a 2MASS XSC source. CAUTION: WISE profile-fit (w?mpro) and standard aperture (w?mag) measurements are optimized for point sources and will systematically underestimate the true flux of resolved objects.
tinyint 1      
ext_flg wise_prelimsc WISE Extended source flag
This flag indicates whether or not the morphology of a source is consistent with the WISE point spread function in any band: 0 - The source shape is consistent with a point-source; 1 - The source shape is not consistent with a point-source
tinyint 1      
ext_key twomass_psc 2MASS Unique identification number of the record in the XSC that corresponds to this point source. int 4     meta.id
ext_key twomass_xsc 2MASS entry counter (key) number (unique within table). int 4     meta.id
externalID vmcEclipsingBinaryVariables VMCv20140903 EROS-2/OGLE III ID: Identification from the EROS-2 or OGLE III catalogues. {catalogue TType keyword: EXT_ID} varchar 32     meta.id
externalID vmcEclipsingBinaryVariables VMCv20150309 EROS-2/OGLE III ID: Identification from the EROS-2 or OGLE III catalogues. {catalogue TType keyword: EXT_ID} varchar 32     meta.id
extID vvvBulge3DExtinctVals EXTINCT UID of the 3D spatial position bigint 8     meta.id;meta.main
extinctionCat MultiframeDetector SVNGC253v20100429 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector SVORIONv20100429 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector ULTRAVISTAv20100429 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VHSDR1 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VHSDR2 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VHSDR3 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VHSv20120926 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VHSv20130417 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VHSv20140409 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VHSv20150108 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VIDEODR2 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VIDEODR3 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VIDEODR4 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VIDEOv20100513 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VIDEOv20111208 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VIKINGDR2 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VIKINGDR3 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VIKINGDR4 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VIKINGv20110714 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VIKINGv20111019 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VIKINGv20130417 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VIKINGv20140402 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VIKINGv20150421 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VMCDR1 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VMCDR2 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VMCDR3 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VMCv20110816 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VMCv20110909 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VMCv20120126 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VMCv20121128 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VMCv20130304 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VMCv20130805 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VMCv20140428 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VMCv20140903 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VMCv20150309 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VSAQC Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VVVDR1 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VVVDR2 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VVVv20100531 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat MultiframeDetector VVVv20110718 Extinction coefficient for the catalogue data {catalogue extension keyword:  EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionCat ultravistaMultiframeDetector, vhsMultiframeDetector, videoMultiframeDetector, vikingMultiframeDetector, vmcMultiframeDetector, vvvMultiframeDetector VSAQC Extinction coefficient for the catalogue data real 4 mags -0.9999995e9 ??
extinctionExt MultiframeDetector SVNGC253v20100429 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector SVORIONv20100429 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector ULTRAVISTAv20100429 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VHSDR1 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VHSDR2 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VHSDR3 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VHSv20120926 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VHSv20130417 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VHSv20140409 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VHSv20150108 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VIDEODR2 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VIDEODR3 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VIDEODR4 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VIDEOv20100513 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VIDEOv20111208 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VIKINGDR2 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VIKINGDR3 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VIKINGDR4 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VIKINGv20110714 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VIKINGv20111019 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VIKINGv20130417 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VIKINGv20140402 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VIKINGv20150421 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VMCDR1 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VMCDR2 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VMCDR3 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VMCv20110816 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VMCv20110909 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VMCv20120126 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VMCv20121128 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VMCv20130304 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VMCv20130805 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VMCv20140428 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VMCv20140903 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VMCv20150309 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VSAQC Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VVVDR1 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VVVDR2 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VVVv20100531 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt MultiframeDetector VVVv20110718 Extinction coefficient of the detector {image extension keyword: EXTINCT} real 4 mags -0.9999995e9 ??
These are currently set to a constant clear night level, which within the current measuring error is the same for all passbands. Note that the frame-by-frame derived ZP from 2MASS automatically corrects for extinction variations, assuming they are uniform across the field of view.
extinctionExt ultravistaMultiframeDetector, vhsMultiframeDetector, videoMultiframeDetector, vikingMultiframeDetector, vmcMultiframeDetector, vvvMultiframeDetector VSAQC Extinction coefficient of the detector real 4 mags -0.9999995e9 ??
extinctionMapList Programme VIKINGv20150421 A list of 3D extinction maps that should be matched to this survey varchar 32   NONE meta.id
extinctionMapList Programme VMCv20150309 A list of 3D extinction maps that should be matched to this survey varchar 32   NONE meta.id
extinctionMapList Programme VSAQC A list of 3D extinction maps that should be matched to this survey varchar 32   NONE meta.id
extl rosat_bsc, rosat_fsc ROSAT likelihood of source extent smallint 2     stat.likelihood
extNum CurrentAstrometry SVORIONv20100429 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry ULTRAVISTAv20100429 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VHSDR1 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VHSDR2 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VHSDR3 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VHSv20120926 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VHSv20130417 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VHSv20140409 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VHSv20150108 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VIDEODR2 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VIDEODR3 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VIDEODR4 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VIDEOv20100513 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VIDEOv20111208 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VIKINGDR2 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VIKINGDR3 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VIKINGDR4 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VIKINGv20110714 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VIKINGv20111019 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VIKINGv20130417 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VIKINGv20140402 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VIKINGv20150421 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VMCDR1 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VMCDR2 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VMCDR3 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VMCv20110816 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VMCv20110909 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VMCv20120126 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VMCv20121128 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VMCv20130304 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VMCv20130805 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VMCv20140428 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VMCv20140903 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VMCv20150309 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VVVDR1 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VVVDR2 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VVVv20100531 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry VVVv20110718 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry, MultiframeDetector, MultiframeDetectorEsoKeys SVNGC253v20100429 the extension number of this frame tinyint 1   0 meta.number
extNum CurrentAstrometry, ultravistaCurrentAstrometry, ultravistaMultiframeDetector, vhsCurrentAstrometry, vhsMultiframeDetector, videoCurrentAstrometry, videoMultiframeDetector, vikingCurrentAstrometry, vikingMultiframeDetector, vmcCurrentAstrometry, vmcMultiframeDetector, vvvCurrentAstrometry, vvvMultiframeDetector VSAQC the extension number of this frame tinyint 1   0 meta.number
extNum PreviousMFDZP VHSDR2 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VHSDR3 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VHSv20120926 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VHSv20130417 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VHSv20140409 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VHSv20150108 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VIDEODR3 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VIDEODR4 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VIDEOv20100513 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VIDEOv20111208 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VIKINGDR3 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VIKINGDR4 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VIKINGv20110714 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VIKINGv20111019 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VIKINGv20130417 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VIKINGv20140402 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VIKINGv20150421 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VMCDR2 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VMCDR3 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VMCv20110816 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VMCv20110909 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VMCv20120126 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VMCv20121128 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VMCv20130304 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VMCv20130805 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VMCv20140428 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VMCv20140903 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VMCv20150309 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VSAQC the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP VVVDR2 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP, svNgc253Detection SVNGC253v20100429 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP, svOrionDetection SVORIONv20100429 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP, ultravistaDetection, ultravistaSourceXDetectionBestMatch ULTRAVISTAv20100429 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP, vhsDetection VHSDR1 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP, videoAstrometricInfo, videoDetection, videoSourceXDetectionBestMatch VIDEODR2 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP, vikingAstrometricInfo, vikingDetection, vikingSourceXDetectionBestMatch VIKINGDR2 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP, vmcAstrometricInfo, vmcDetection VMCDR1 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP, vvvAstrometricInfo, vvvDetection, vvvSourceXDetectionBestMatch VVVDR1 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP, vvvDetection, vvvListRemeasurement VVVv20100531 the extension number of this frame tinyint 1     meta.number
extNum PreviousMFDZP, vvvListRemeasurement VVVv20110718 the extension number of this frame tinyint 1     meta.number
extProgID RequiredNeighbours SVNGC253v20100429 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours SVORIONv20100429 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours ULTRAVISTAv20100429 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VHSDR1 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VHSDR2 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VHSDR3 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VHSv20120926 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VHSv20130417 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VHSv20150108 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VIDEODR2 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VIDEODR3 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VIDEODR4 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VIDEOv20100513 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VIDEOv20111208 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VIKINGDR2 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VIKINGDR3 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VIKINGDR4 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VIKINGv20110714 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VIKINGv20111019 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VIKINGv20130417 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VIKINGv20150421 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VMCDR1 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VMCDR3 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VMCv20110816 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VMCv20110909 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VMCv20120126 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VMCv20121128 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VMCv20130304 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VMCv20130805 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VMCv20140428 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VMCv20140903 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VMCv20150309 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VSAQC the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VVVDR1 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VVVDR2 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VVVv20100531 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extProgID RequiredNeighbours VVVv20110718 the unique programme ID for second table if there are multiple programmes in the neighbour survey int 4   -99999999 meta.id
extr rosat_bsc, rosat_fsc ROSAT extraction radius smallint 2 arcsec   stat.fit.param
extractor RequiredListDrivenProduct VHSv20120926 CASU list driven or SExtractor dual image mode varchar 16   'NONE'  
extractor RequiredListDrivenProduct VHSv20130417 CASU list driven or SExtractor dual image mode varchar 16   NONE  
extractor RequiredListDrivenProduct VIDEODR3 CASU list driven or SExtractor dual image mode varchar 16   'NONE'  
extractor RequiredListDrivenProduct VIKINGDR3 CASU list driven or SExtractor dual image mode varchar 16   'NONE'  
extractor RequiredListDrivenProduct VIKINGv20130417 CASU list driven or SExtractor dual image mode varchar 16   NONE  
extractor RequiredListDrivenProduct VMCv20121128 CASU list driven or SExtractor dual image mode varchar 16   'NONE'  
extractor RequiredListDrivenProduct VMCv20130304 CASU list driven or SExtractor dual image mode varchar 16   'NONE'  
extractor RequiredListDrivenProduct VMCv20130805 CASU list driven or SExtractor dual image mode varchar 16   NONE  
extractor RequiredListDrivenProduct VVVDR1 CASU list driven or SExtractor dual image mode varchar 16   'NONE'  
extractTool Programme SVNGC253v20100429 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme SVORIONv20100429 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme ULTRAVISTAv20100429 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VHSDR1 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VHSDR2 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VHSDR3 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VHSv20120926 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VHSv20130417 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VHSv20150108 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VIDEODR2 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VIDEODR3 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VIDEODR4 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VIDEOv20100513 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VIDEOv20111208 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VIKINGDR2 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VIKINGDR3 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VIKINGDR4 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VIKINGv20110714 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VIKINGv20111019 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VIKINGv20130417 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VIKINGv20150421 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VMCDR1 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VMCDR3 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VMCv20110816 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VMCv20110909 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VMCv20120126 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VMCv20121128 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VMCv20130304 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VMCv20130805 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VMCv20140428 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VMCv20140903 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VMCv20150309 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VSAQC Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VVVDR1 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VVVDR2 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VVVv20100531 Name of extraction tool to be used varchar 8   NONE ??
extractTool Programme VVVv20110718 Name of extraction tool to be used varchar 8   NONE ??
extTableID ExternalSurveyTable SVORIONv20100429 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable ULTRAVISTAv20100429 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VHSDR1 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VHSDR2 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VHSDR3 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VHSv20120926 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VHSv20130417 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VHSv20150108 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VIDEODR2 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VIDEODR3 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VIDEODR4 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VIDEOv20100513 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VIDEOv20111208 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VIKINGDR2 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VIKINGDR3 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VIKINGDR4 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VIKINGv20110714 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VIKINGv20111019 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VIKINGv20130417 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VIKINGv20150421 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VMCDR1 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VMCDR3 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VMCv20110816 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VMCv20110909 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VMCv20120126 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VMCv20121128 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VMCv20130304 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VMCv20130805 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VMCv20140428 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VMCv20140903 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VMCv20150309 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VSAQC the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VVVDR1 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VVVDR2 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VVVv20100531 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable VVVv20110718 the unique table ID int 4     meta.id;meta.main
extTableID ExternalSurveyTable, RequiredNeighbours SVNGC253v20100429 the unique table ID int 4     meta.id;meta.main
extTableName ExternalSurveyTable SVNGC253v20100429 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable SVORIONv20100429 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable ULTRAVISTAv20100429 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VHSDR1 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VHSDR2 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VHSDR3 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VHSv20120926 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VHSv20130417 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VHSv20150108 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VIDEODR2 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VIDEODR3 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VIDEODR4 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VIDEOv20100513 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VIDEOv20111208 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VIKINGDR2 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VIKINGDR3 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VIKINGDR4 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VIKINGv20110714 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VIKINGv20111019 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VIKINGv20130417 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VIKINGv20150421 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VMCDR1 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VMCDR3 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VMCv20110816 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VMCv20110909 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VMCv20120126 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VMCv20121128 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VMCv20130304 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VMCv20130805 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VMCv20140428 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VMCv20140903 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VMCv20150309 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VSAQC the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VVVDR1 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VVVDR2 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VVVv20100531 the name of the table varchar 256     meta.id;meta.dataset
extTableName ExternalSurveyTable VVVv20110718 the name of the table varchar 256     meta.id;meta.dataset



Home | Overview | Browser | Access | Login | Cookbook
Listing | FreeSQL
Links | Credits

WFAU, Institute for Astronomy,
Royal Observatory, Blackford Hill
Edinburgh, EH9 3HJ, UK

vsa-support@roe.ac.uk
01/09/2015