Home | Overview | Browser | Access | Login | Cookbook 
  VSA logo

Glossary of VSA attributes

This Glossary alphabetically lists all attributes used in the VSAv20240809 database(s) held in the VSA. If you would like to have more information about the schema tables please use the VSAv20240809 Schema Browser (other Browser versions).
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

C

NameSchema TableDatabaseDescriptionTypeLengthUnitDefault ValueUnified Content Descriptor
C1 mgcGalaxyStruct MGC Concentration index alpha=1 real 4   99.99  
c1 ravedr5Source RAVE 1.st minimum distance to base spectrum given by one of the types (enumeration [a,b,c,d,e,g,h,n,o,p,t,u,w]) varchar 6     meta.code
c10 ravedr5Source RAVE 10.th minimum distance to base spectrum given by one of the types (enumeration [a,b,c,d,e,g,h,n,o,p,t,u,w]) varchar 6     meta.code
c11 ravedr5Source RAVE 11.th minimum distance to base spectrum given by one of the types (enumeration [a,b,c,d,e,g,h,n,o,p,t,u,w]) varchar 6     meta.code
c12 ravedr5Source RAVE 12.th minimum distance to base spectrum given by one of the types (enumeration [a,b,c,d,e,g,h,n,o,p,t,u,w]) varchar 6     meta.code
c13 ravedr5Source RAVE 13.th minimum distance to base spectrum given by one of the types (enumeration [a,b,c,d,e,g,h,n,o,p,t,u,w]) varchar 6     meta.code
c14 ravedr5Source RAVE 14.th minimum distance to base spectrum given by one of the types (enumeration [a,b,c,d,e,g,h,n,o,p,t,u,w]) varchar 6     meta.code
c15 ravedr5Source RAVE 15.th minimum distance to base spectrum given by one of the types (enumeration [a,b,c,d,e,g,h,n,o,p,t,u,w]) varchar 6     meta.code
c16 ravedr5Source RAVE 16.th minimum distance to base spectrum given by one of the types (enumeration [a,b,c,d,e,g,h,n,o,p,t,u,w]) varchar 6     meta.code
c17 ravedr5Source RAVE 17.th minimum distance to base spectrum given by one of the types (enumeration [a,b,c,d,e,g,h,n,o,p,t,u,w]) varchar 6     meta.code
c18 ravedr5Source RAVE 18.th minimum distance to base spectrum given by one of the types (enumeration [a,b,c,d,e,g,h,n,o,p,t,u,w] ) varchar 6     meta.code
c19 ravedr5Source RAVE 19.th minimum distance to base spectrum given by one of the types (enumeration [a,b,c,d,e,g,h,n,o,p,t,u,w]) varchar 6     meta.code
C2 mgcGalaxyStruct MGC Concentration index alpha=2 real 4   99.99  
c2 ravedr5Source RAVE 2.nd minimum distance to base spectrum given by one of the types (enumeration [a,b,c,d,e,g,h,n,o,p,t,u,w]) varchar 6     meta.code
c20 ravedr5Source RAVE 20.th minimum distance to base spectrum given by one of the types (enumeration [a,b,c,d,e,g,h,n,o,p,t,u,w]) varchar 6     meta.code
C3 mgcGalaxyStruct MGC Concentration index alpha=3 real 4   99.99  
c3 ravedr5Source RAVE 3.rd minimum distance to base spectrum given by one of the types (enumeration [a,b,c,d,e,g,h,n,o,p,t,u,w]) varchar 6     meta.code
C4 mgcGalaxyStruct MGC Concentration index alpha=4 real 4   99.99  
c4 ravedr5Source RAVE 4.th minimum distance to base spectrum given by one of the types (enumeration [a,b,c,d,e,g,h,n,o,p,t,u,w]) varchar 6     meta.code
c5 ravedr5Source RAVE 5.th minimum distance to base spectrum given by one of the types (enumeration [a,b,c,d,e,g,h,n,o,p,t,u,w]) varchar 6     meta.code
c6 ravedr5Source RAVE 6.th minimum distance to base spectrum given by one of the types (enumeration [a,b,c,d,e,g,h,n,o,p,t,u,w]) varchar 6     meta.code
c7 ravedr5Source RAVE 7.th minimum distance to base spectrum given by one of the types (enumeration [a,b,c,d,e,g,h,n,o,p,t,u,w]) varchar 6     meta.code
c8 ravedr5Source RAVE 8.th minimum distance to base spectrum given by one of the types (enumeration [a,b,c,d,e,g,h,n,o,p,t,u,w]) varchar 6     meta.code
c9 ravedr5Source RAVE 9.th minimum distance to base spectrum given by one of the types (enumeration [a,b,c,d,e,g,h,n,o,p,t,u,w]) varchar 6     meta.code
c_strat twomass_scn TWOMASS Flag indicating the calibration strategy for this night's data. smallint 2     meta.code
c_strat twomass_sixx2_scn TWOMASS calibration strategy, north only (0=old, 1=new) smallint 2      
camNum MultiframeDetector SHARKSv20210222 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector SHARKSv20210421 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector ULTRAVISTADR4 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VHSDR1 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VHSDR2 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VHSDR3 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VHSDR4 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VHSDR5 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VHSDR6 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VHSv20120926 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VHSv20130417 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VHSv20140409 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VHSv20150108 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VHSv20160114 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VHSv20160507 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VHSv20170630 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VHSv20180419 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VHSv20201209 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VHSv20231101 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VHSv20240731 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VIDEODR2 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VIDEODR3 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VIDEODR4 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VIDEODR5 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VIDEOv20100513 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VIDEOv20111208 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VIKINGDR2 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VIKINGDR3 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VIKINGDR4 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VIKINGv20110714 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VIKINGv20111019 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VIKINGv20130417 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VIKINGv20140402 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VIKINGv20150421 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VIKINGv20151230 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VIKINGv20160406 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VIKINGv20161202 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VIKINGv20170715 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VMCDEEPv20230713 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VMCDEEPv20240506 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VMCDR1 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VMCDR2 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VMCDR3 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VMCDR4 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VMCDR5 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VMCv20110816 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VMCv20110909 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VMCv20120126 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VMCv20121128 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VMCv20130304 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VMCv20130805 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VMCv20140428 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VMCv20140903 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VMCv20150309 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VMCv20151218 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VMCv20160311 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VMCv20160822 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VMCv20170109 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VMCv20170411 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VMCv20171101 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VMCv20180702 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VMCv20181120 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VMCv20191212 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VMCv20210708 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VMCv20230816 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VMCv20240226 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VVVDR1 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VVVDR2 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VVVDR5 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VVVXDR1 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VVVv20100531 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum MultiframeDetector VVVv20110718 Number of VISTA camera (1 to 16) {image extension keyword: HIERARCH ESO DET CHIP NO} smallint 2   -9999 obs.field
camNum SectionDetectors SHARKSv20210222 UID of camera detector smallint 2      
camNum SectionDetectors SHARKSv20210421 UID of camera detector smallint 2      
camNum SectionDetectors ULTRAVISTADR4 UID of camera detector smallint 2      
camNum SectionDetectors VHSDR3 UID of camera detector smallint 2      
camNum SectionDetectors VHSDR4 UID of camera detector smallint 2      
camNum SectionDetectors VHSDR5 UID of camera detector smallint 2      
camNum SectionDetectors VHSDR6 UID of camera detector smallint 2      
camNum SectionDetectors VHSv20150108 UID of camera detector smallint 2      
camNum SectionDetectors VHSv20160114 UID of camera detector smallint 2      
camNum SectionDetectors VHSv20160507 UID of camera detector smallint 2      
camNum SectionDetectors VHSv20170630 UID of camera detector smallint 2      
camNum SectionDetectors VHSv20180419 UID of camera detector smallint 2      
camNum SectionDetectors VHSv20201209 UID of camera detector smallint 2      
camNum SectionDetectors VHSv20231101 UID of camera detector smallint 2      
camNum SectionDetectors VHSv20240731 UID of camera detector smallint 2      
camNum SectionDetectors VIDEODR4 UID of camera detector smallint 2      
camNum SectionDetectors VIDEODR5 UID of camera detector smallint 2      
camNum SectionDetectors VIKINGDR4 UID of camera detector smallint 2      
camNum SectionDetectors VIKINGv20150421 UID of camera detector smallint 2      
camNum SectionDetectors VIKINGv20151230 UID of camera detector smallint 2      
camNum SectionDetectors VIKINGv20160406 UID of camera detector smallint 2      
camNum SectionDetectors VIKINGv20161202 UID of camera detector smallint 2      
camNum SectionDetectors VIKINGv20170715 UID of camera detector smallint 2      
camNum SectionDetectors VMCDEEPv20230713 UID of camera detector smallint 2      
camNum SectionDetectors VMCDEEPv20240506 UID of camera detector smallint 2      
camNum SectionDetectors VMCDR3 UID of camera detector smallint 2      
camNum SectionDetectors VMCDR4 UID of camera detector smallint 2      
camNum SectionDetectors VMCDR5 UID of camera detector smallint 2      
camNum SectionDetectors VMCv20140428 UID of camera detector smallint 2      
camNum SectionDetectors VMCv20140903 UID of camera detector smallint 2      
camNum SectionDetectors VMCv20150309 UID of camera detector smallint 2      
camNum SectionDetectors VMCv20151218 UID of camera detector smallint 2      
camNum SectionDetectors VMCv20160311 UID of camera detector smallint 2      
camNum SectionDetectors VMCv20160822 UID of camera detector smallint 2      
camNum SectionDetectors VMCv20170109 UID of camera detector smallint 2      
camNum SectionDetectors VMCv20170411 UID of camera detector smallint 2      
camNum SectionDetectors VMCv20171101 UID of camera detector smallint 2      
camNum SectionDetectors VMCv20180702 UID of camera detector smallint 2      
camNum SectionDetectors VMCv20181120 UID of camera detector smallint 2      
camNum SectionDetectors VMCv20191212 UID of camera detector smallint 2      
camNum SectionDetectors VMCv20210708 UID of camera detector smallint 2      
camNum SectionDetectors VMCv20230816 UID of camera detector smallint 2      
camNum SectionDetectors VMCv20240226 UID of camera detector smallint 2      
camNum SectionDetectors VVVDR5 UID of camera detector smallint 2      
camNum SectionDetectors VVVXDR1 UID of camera detector smallint 2      
camNum sharksMultiframeDetector, ultravistaMultiframeDetector, vhsMultiframeDetector, videoMultiframeDetector, vikingMultiframeDetector, vmcMultiframeDetector, vvvMultiframeDetector VSAQC Number of VISTA camera (1 to 16) smallint 2   -9999 obs.field
casuVers Multiframe SHARKSv20210222 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe SHARKSv20210421 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe ULTRAVISTADR4 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VHSDR1 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VHSDR2 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VHSDR3 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VHSDR4 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VHSDR5 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VHSDR6 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VHSv20120926 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VHSv20130417 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VHSv20140409 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VHSv20150108 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VHSv20160114 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VHSv20160507 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VHSv20170630 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VHSv20180419 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VHSv20201209 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VHSv20231101 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VHSv20240731 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VIDEODR2 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VIDEODR3 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VIDEODR4 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VIDEODR5 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VIDEOv20100513 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VIDEOv20111208 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VIKINGDR2 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VIKINGDR3 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VIKINGDR4 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VIKINGv20110714 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VIKINGv20111019 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VIKINGv20130417 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VIKINGv20140402 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VIKINGv20150421 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VIKINGv20151230 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VIKINGv20160406 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VIKINGv20161202 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VIKINGv20170715 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VMCDEEPv20230713 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VMCDEEPv20240506 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VMCDR1 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VMCDR2 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VMCDR3 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VMCDR4 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VMCDR5 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VMCv20110816 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VMCv20110909 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VMCv20120126 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VMCv20121128 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VMCv20130304 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VMCv20130805 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VMCv20140428 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VMCv20140903 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VMCv20150309 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VMCv20151218 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VMCv20160311 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VMCv20160822 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VMCv20170109 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VMCv20170411 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VMCv20171101 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VMCv20180702 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VMCv20181120 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VMCv20191212 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VMCv20210708 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VMCv20230816 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VMCv20240226 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VVVDR1 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VVVDR2 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VVVDR5 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VVVXDR1 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VVVv20100531 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers Multiframe VVVv20110718 CASU Release Version Number {image primary HDU keyword: CASUVERS} varchar 64   NONE meta.id
casuVers sharksMultiframe, ultravistaMultiframe, vhsMultiframe, videoMultiframe, vikingMultiframe, vmcMultiframe, vvvMultiframe VSAQC CASU Release Version Number varchar 64   NONE meta.id
cat twomass_sixx2_psc, twomass_sixx2_scn, twomass_sixx2_xsc TWOMASS Catalog indicator 1=catalog, 0=not catalog smallint 2      
catalogue vmcCepheidVariables VMCDR4 Name of the catalogue containing the counterparts of the VMC Cephs: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcCepheidVariables VMCv20160311 Name of the catalogue containing the counterparts of the VMC Cephs: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcCepheidVariables VMCv20160822 Name of the catalogue containing the counterparts of the VMC Cephs: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcCepheidVariables VMCv20170109 Name of the catalogue containing the counterparts of the VMC Cephs: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcCepheidVariables VMCv20170411 Name of the catalogue containing the counterparts of the VMC Cephs: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcCepheidVariables VMCv20171101 Name of the catalogue containing the counterparts of the VMC Cephs: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcCepheidVariables VMCv20180702 Name of the catalogue containing the counterparts of the VMC Cephs: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcCepheidVariables VMCv20181120 Name of the catalogue containing the counterparts of the VMC Cephs: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcCepheidVariables VMCv20191212 Name of the catalogue containing the counterparts of the VMC Cephs: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcCepheidVariables VMCv20210708 Name of the catalogue containing the counterparts of the VMC Cephs: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcCepheidVariables VMCv20230816 Name of the catalogue containing the counterparts of the VMC Cephs: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcCepheidVariables VMCv20240226 Name of the catalogue containing the counterparts of the VMC Cephs: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcEclipsingBinaryVariables VMCDR4 Name of the catalogue containing the counterparts of the VMC EBs: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcEclipsingBinaryVariables VMCv20140903 Name of the catalogue containing the counterparts of the VMC EBs: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcEclipsingBinaryVariables VMCv20150309 Name of the catalogue containing the counterparts of the VMC EBs: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcEclipsingBinaryVariables VMCv20151218 Name of the catalogue containing the counterparts of the VMC EBs: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcEclipsingBinaryVariables VMCv20160311 Name of the catalogue containing the counterparts of the VMC EBs: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcEclipsingBinaryVariables VMCv20160822 Name of the catalogue containing the counterparts of the VMC EBs: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcEclipsingBinaryVariables VMCv20170109 Name of the catalogue containing the counterparts of the VMC EBs: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcEclipsingBinaryVariables VMCv20170411 Name of the catalogue containing the counterparts of the VMC EBs: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcEclipsingBinaryVariables VMCv20171101 Name of the catalogue containing the counterparts of the VMC EBs: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcEclipsingBinaryVariables VMCv20180702 Name of the catalogue containing the counterparts of the VMC EBs: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcEclipsingBinaryVariables VMCv20181120 Name of the catalogue containing the counterparts of the VMC EBs: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcEclipsingBinaryVariables VMCv20191212 Name of the catalogue containing the counterparts of the VMC EBs: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcEclipsingBinaryVariables VMCv20210708 Name of the catalogue containing the counterparts of the VMC EBs: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcEclipsingBinaryVariables VMCv20230816 Name of the catalogue containing the counterparts of the VMC EBs: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcEclipsingBinaryVariables VMCv20240226 Name of the catalogue containing the counterparts of the VMC EBs: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcRRlyraeVariables VMCDR4 Name of the catalogue containing the counterparts of the VMC RRLyr: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcRRlyraeVariables VMCv20160822 Name of the catalogue containing the counterparts of the VMC RRLyr: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcRRlyraeVariables VMCv20170109 Name of the catalogue containing the counterparts of the VMC RRLyr: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcRRlyraeVariables VMCv20170411 Name of the catalogue containing the counterparts of the VMC RRLyr: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcRRlyraeVariables VMCv20171101 Name of the catalogue containing the counterparts of the VMC RRLyr: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcRRlyraeVariables VMCv20180702 Name of the catalogue containing the counterparts of the VMC RRLyr: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcRRlyraeVariables VMCv20181120 Name of the catalogue containing the counterparts of the VMC RRLyr: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcRRlyraeVariables VMCv20191212 Name of the catalogue containing the counterparts of the VMC RRLyr: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcRRlyraeVariables VMCv20210708 Name of the catalogue containing the counterparts of the VMC RRLyr: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogue vmcRRlyraeVariables VMCv20230816 Name of the catalogue containing the counterparts of the VMC RRLyr: OGLE III, EROS-2 or both OGLE III /EROS-2 {catalogue TType keyword: CATALOGUE} varchar 16   NONE meta.id
catalogueID MapCatalogueDetector SHARKSv20210222 Unique identifier for catalogue bigint 8   -99999999 meta_id
catalogueID MapCatalogueDetector SHARKSv20210421 Unique identifier for catalogue bigint 8   -99999999 meta_id
catalogueID MapCatalogueDetector ULTRAVISTADR4 Unique identifier for catalogue bigint 8   -99999999 meta_id
catalogueID MapCatalogueDetector VHSv20201209 Unique identifier for catalogue bigint 8   -99999999 meta_id
catalogueID MapCatalogueDetector VHSv20231101 Unique identifier for catalogue bigint 8   -99999999 meta_id
catalogueID MapCatalogueDetector VHSv20240731 Unique identifier for catalogue bigint 8   -99999999 meta_id
catalogueID MapCatalogueDetector VMCDEEPv20230713 Unique identifier for catalogue bigint 8   -99999999 meta_id
catalogueID MapCatalogueDetector VMCDEEPv20240506 Unique identifier for catalogue bigint 8   -99999999 meta_id
catalogueID MapCatalogueDetector VMCDR5 Unique identifier for catalogue bigint 8   -99999999 meta_id
catalogueID MapCatalogueDetector VMCv20191212 Unique identifier for catalogue bigint 8   -99999999 meta_id
catalogueID MapCatalogueDetector VMCv20210708 Unique identifier for catalogue bigint 8   -99999999 meta_id
catalogueID MapCatalogueDetector VMCv20230816 Unique identifier for catalogue bigint 8   -99999999 meta_id
catalogueID MapCatalogueDetector VMCv20240226 Unique identifier for catalogue bigint 8   -99999999 meta_id
catalogueID MapCatalogueDetector VVVDR5 Unique identifier for catalogue bigint 8   -99999999 meta_id
catalogueID MapCatalogueDetector VVVXDR1 Unique identifier for catalogue bigint 8   -99999999 meta_id
catalogueID MapFrameStatus SHARKSv20210222 Unique identifier for catalogue bigint 8   -99999999 meta_id;meta_main
catalogueID MapFrameStatus SHARKSv20210421 Unique identifier for catalogue bigint 8   -99999999 meta_id;meta_main
catalogueID MapFrameStatus VHSv20201209 Unique identifier for catalogue bigint 8   -99999999 meta_id;meta_main
catalogueID MapFrameStatus VHSv20231101 Unique identifier for catalogue bigint 8   -99999999 meta_id;meta_main
catalogueID MapFrameStatus VHSv20240731 Unique identifier for catalogue bigint 8   -99999999 meta_id;meta_main
catalogueID MapFrameStatus VMCDEEPv20230713 Unique identifier for catalogue bigint 8   -99999999 meta_id;meta_main
catalogueID MapFrameStatus VMCDEEPv20240506 Unique identifier for catalogue bigint 8   -99999999 meta_id;meta_main
catalogueID MapFrameStatus VMCDR5 Unique identifier for catalogue bigint 8   -99999999 meta_id;meta_main
catalogueID MapFrameStatus VMCv20191212 Unique identifier for catalogue bigint 8   -99999999 meta_id;meta_main
catalogueID MapFrameStatus VMCv20210708 Unique identifier for catalogue bigint 8   -99999999 meta_id;meta_main
catalogueID MapFrameStatus VMCv20230816 Unique identifier for catalogue bigint 8   -99999999 meta_id;meta_main
catalogueID MapFrameStatus VMCv20240226 Unique identifier for catalogue bigint 8   -99999999 meta_id;meta_main
catalogueID MapFrameStatus VVVDR5 Unique identifier for catalogue bigint 8   -99999999 meta_id;meta_main
catalogueID MapFrameStatus VVVXDR1 Unique identifier for catalogue bigint 8   -99999999 meta_id;meta_main
catalogueID MapFrameStatus, ultravistaMapRemeasAver ULTRAVISTADR4 Unique identifier for catalogue bigint 8   -99999999 meta_id;meta_main
catalogueID MapProvenance ULTRAVISTADR4 the UID of the component frame bigint 8     obs.field
catalogueID SExtractorInputParams SHARKSv20210222 UID of the catalogue bigint 8      
catalogueID SExtractorInputParams SHARKSv20210421 UID of the catalogue bigint 8      
catalogueID SExtractorInputParams ULTRAVISTADR4 UID of the catalogue bigint 8      
catalogueID SExtractorInputParams VHSv20201209 UID of the catalogue bigint 8      
catalogueID SExtractorInputParams VHSv20231101 UID of the catalogue bigint 8      
catalogueID SExtractorInputParams VHSv20240731 UID of the catalogue bigint 8      
catalogueID SExtractorInputParams VMCDEEPv20230713 UID of the catalogue bigint 8      
catalogueID SExtractorInputParams VMCDEEPv20240506 UID of the catalogue bigint 8      
catalogueID SExtractorInputParams VMCDR5 UID of the catalogue bigint 8      
catalogueID SExtractorInputParams VMCv20191212 UID of the catalogue bigint 8      
catalogueID SExtractorInputParams VMCv20210708 UID of the catalogue bigint 8      
catalogueID SExtractorInputParams VMCv20230816 UID of the catalogue bigint 8      
catalogueID SExtractorInputParams VMCv20240226 UID of the catalogue bigint 8      
catalogueID SExtractorInputParams VVVDR5 UID of the catalogue bigint 8      
catalogueID SExtractorInputParams VVVXDR1 UID of the catalogue bigint 8      
catalogueID ultravistaMapAverageWeights ULTRAVISTADR4 Unique identifier for input catalogue bigint 8   -99999999 meta_id
catalogueID ultravistaMapRemeasurement ULTRAVISTADR4 Unique identifier for catalogue {catalogue extension keyword:  CATLGID} bigint 8   -99999999 meta_id;meta_main
catalogueID vikingMapRemeasAver VIKINGZYSELJv20160909 Unique identifier for catalogue bigint 8   -99999999 meta_id;meta_main
catalogueID vikingMapRemeasAver VIKINGZYSELJv20170124 Unique identifier for catalogue bigint 8   -99999999 meta_id;meta_main
catalogueID vikingMapRemeasurement VIKINGZYSELJv20160909 Unique identifier for catalogue {catalogue extension keyword:  CATLGID} bigint 8   -99999999 meta_id;meta_main
catalogueID vikingMapRemeasurement VIKINGZYSELJv20170124 Unique identifier for catalogue {catalogue extension keyword:  CATLGID} bigint 8   -99999999 meta_id;meta_main
catalogueSchema Programme SHARKSv20210222 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme SHARKSv20210421 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme ULTRAVISTADR4 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VHSDR1 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VHSDR2 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VHSDR3 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VHSDR4 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VHSDR5 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VHSDR6 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VHSv20120926 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VHSv20130417 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VHSv20150108 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VHSv20160114 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VHSv20160507 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VHSv20170630 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VHSv20180419 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VHSv20201209 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VHSv20231101 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VHSv20240731 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VIDEODR2 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VIDEODR3 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VIDEODR4 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VIDEODR5 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VIDEOv20100513 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VIDEOv20111208 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VIKINGDR2 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VIKINGDR3 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VIKINGDR4 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VIKINGv20110714 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VIKINGv20111019 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VIKINGv20130417 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VIKINGv20150421 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VIKINGv20151230 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VIKINGv20160406 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VIKINGv20161202 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VIKINGv20170715 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VMCDEEPv20230713 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VMCDEEPv20240506 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VMCDR1 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VMCDR3 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VMCDR4 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VMCDR5 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VMCv20110816 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VMCv20110909 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VMCv20120126 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VMCv20121128 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VMCv20130304 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VMCv20130805 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VMCv20140428 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VMCv20140903 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VMCv20150309 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VMCv20151218 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VMCv20160311 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VMCv20160822 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VMCv20170109 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VMCv20170411 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VMCv20171101 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VMCv20180702 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VMCv20181120 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VMCv20191212 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VMCv20210708 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VMCv20230816 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VMCv20240226 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VSAQC Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VVVDR1 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VVVDR2 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VVVDR5 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VVVXDR1 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VVVv20100531 Script file that describes the catalogue schema varchar 64     ??
catalogueSchema Programme VVVv20110718 Script file that describes the catalogue schema varchar 64     ??
catCreationDate MultiframeDetector SHARKSv20210222 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector SHARKSv20210421 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector ULTRAVISTADR4 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VHSDR1 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VHSDR2 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VHSDR3 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VHSDR4 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VHSDR5 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VHSDR6 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VHSv20120926 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VHSv20130417 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VHSv20140409 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VHSv20150108 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VHSv20160114 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VHSv20160507 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VHSv20170630 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VHSv20180419 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VHSv20201209 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VHSv20231101 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VHSv20240731 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VIDEODR2 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VIDEODR3 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VIDEODR4 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VIDEODR5 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VIDEOv20100513 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VIDEOv20111208 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VIKINGDR2 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VIKINGDR3 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VIKINGDR4 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VIKINGv20110714 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VIKINGv20111019 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VIKINGv20130417 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VIKINGv20140402 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VIKINGv20150421 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VIKINGv20151230 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VIKINGv20160406 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VIKINGv20161202 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VIKINGv20170715 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VMCDEEPv20230713 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VMCDEEPv20240506 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VMCDR1 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VMCDR2 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VMCDR3 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VMCDR4 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VMCDR5 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VMCv20110816 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VMCv20110909 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VMCv20120126 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VMCv20121128 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VMCv20130304 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VMCv20130805 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VMCv20140428 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VMCv20140903 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VMCv20150309 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VMCv20151218 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VMCv20160311 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VMCv20160822 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VMCv20170109 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VMCv20170411 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VMCv20171101 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VMCv20180702 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VMCv20181120 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VMCv20191212 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VMCv20210708 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VMCv20230816 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VMCv20240226 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VVVDR1 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VVVDR2 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VVVDR5 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VVVXDR1 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VVVv20100531 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate MultiframeDetector VVVv20110718 Creation date/time of catalogue file {catalogue extension keyword:  DATE} datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catCreationDate sharksMultiframeDetector, ultravistaMultiframeDetector, vhsMultiframeDetector, videoMultiframeDetector, vikingMultiframeDetector, vmcMultiframeDetector, vvvMultiframeDetector VSAQC Creation date/time of catalogue file datetime 8 MM-DD-YYYY:hh:mm:ss.sss 12-31-9999 ??
catFlag vmcMLClassificationCatalogue VMCv20240226 Flag indicating which catalogue the source belongs to. 'H' = High-confidence (>80%), 'M' = Mid-confidence (>60%, <80%) and 'L' = Low-confidence (<60%). {catalogue TType keyword: Cat_flag} varchar 1      
CATNAME agntwomass, denisi, denisj, durukst, fsc, hes, hipass, nvss, rass, shapley, sumss, supercos, twomass SIXDF supplied catalogue name varchar 15      
catName MapFrameStatus SHARKSv20210222 the filename of the associated catalogue MEF, eg. server:/path/filename_list.fits varchar 256   NONE meta.id;meta.dataset
catName MapFrameStatus SHARKSv20210421 the filename of the associated catalogue MEF, eg. server:/path/filename_list.fits varchar 256   NONE meta.id;meta.dataset
catName MapFrameStatus ULTRAVISTADR4 the filename of the associated catalogue MEF, eg. server:/path/filename_list.fits varchar 256   NONE meta.id;meta.dataset
catName MapFrameStatus VHSv20201209 the filename of the associated catalogue MEF, eg. server:/path/filename_list.fits varchar 256   NONE meta.id;meta.dataset
catName MapFrameStatus VHSv20231101 the filename of the associated catalogue MEF, eg. server:/path/filename_list.fits varchar 256   NONE meta.id;meta.dataset
catName MapFrameStatus VHSv20240731 the filename of the associated catalogue MEF, eg. server:/path/filename_list.fits varchar 256   NONE meta.id;meta.dataset
catName MapFrameStatus VMCDEEPv20230713 the filename of the associated catalogue MEF, eg. server:/path/filename_list.fits varchar 256   NONE meta.id;meta.dataset
catName MapFrameStatus VMCDEEPv20240506 the filename of the associated catalogue MEF, eg. server:/path/filename_list.fits varchar 256   NONE meta.id;meta.dataset
catName MapFrameStatus VMCDR5 the filename of the associated catalogue MEF, eg. server:/path/filename_list.fits varchar 256   NONE meta.id;meta.dataset
catName MapFrameStatus VMCv20191212 the filename of the associated catalogue MEF, eg. server:/path/filename_list.fits varchar 256   NONE meta.id;meta.dataset
catName MapFrameStatus VMCv20210708 the filename of the associated catalogue MEF, eg. server:/path/filename_list.fits varchar 256   NONE meta.id;meta.dataset
catName MapFrameStatus VMCv20230816 the filename of the associated catalogue MEF, eg. server:/path/filename_list.fits varchar 256   NONE meta.id;meta.dataset
catName MapFrameStatus VMCv20240226 the filename of the associated catalogue MEF, eg. server:/path/filename_list.fits varchar 256   NONE meta.id;meta.dataset
catName MapFrameStatus VVVDR5 the filename of the associated catalogue MEF, eg. server:/path/filename_list.fits varchar 256   NONE meta.id;meta.dataset
catName MapFrameStatus VVVXDR1 the filename of the associated catalogue MEF, eg. server:/path/filename_list.fits varchar 256   NONE meta.id;meta.dataset
catName Multiframe SHARKSv20210222 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe SHARKSv20210421 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe ULTRAVISTADR4 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VHSDR1 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VHSDR2 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VHSDR3 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VHSDR4 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VHSDR5 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VHSDR6 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VHSv20120926 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VHSv20130417 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VHSv20140409 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VHSv20150108 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VHSv20160114 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VHSv20160507 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VHSv20170630 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VHSv20180419 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VHSv20201209 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VHSv20231101 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VHSv20240731 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VIDEODR2 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VIDEODR3 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VIDEODR4 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VIDEODR5 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VIDEOv20100513 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VIDEOv20111208 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VIKINGDR2 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VIKINGDR3 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VIKINGDR4 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VIKINGv20110714 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VIKINGv20111019 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VIKINGv20130417 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VIKINGv20140402 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VIKINGv20150421 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VIKINGv20151230 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VIKINGv20160406 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VIKINGv20161202 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VIKINGv20170715 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VMCDEEPv20230713 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VMCDEEPv20240506 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VMCDR1 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VMCDR2 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VMCDR3 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VMCDR4 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VMCDR5 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VMCv20110816 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VMCv20110909 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VMCv20120126 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VMCv20121128 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VMCv20130304 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VMCv20130805 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VMCv20140428 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VMCv20140903 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VMCv20150309 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VMCv20151218 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VMCv20160311 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VMCv20160822 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VMCv20170109 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VMCv20170411 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VMCv20171101 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VMCv20180702 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VMCv20181120 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VMCv20191212 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VMCv20210708 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VMCv20230816 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VMCv20240226 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VVVDR1 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VVVDR2 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VVVDR5 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VVVXDR1 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VVVv20100531 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName Multiframe VVVv20110718 the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   'NONE' meta.id;meta.dataset
catName iras_assoc_cats IRAS Source Name varchar 32     meta.id;meta.main
catName sharksMultiframe, ultravistaMultiframe, vhsMultiframe, videoMultiframe, vikingMultiframe, vmcMultiframe, vvvMultiframe VSAQC the filename of the associated catalogue MEF, eg. server:/path/filename.fits varchar 256   meta.id;meta.dataset
catNo iras_asc, iras_assoc_cats IRAS Catalog number tinyint 1     meta.id;meta.dataset
cc_100 iras_psc IRAS point source correlation coefficient (100 micron). varchar 1     meta.note
cc_12 iras_psc IRAS point source correlation coefficient (12 micron). varchar 1     meta.note
cc_25 iras_psc IRAS point source correlation coefficient (25 micron). varchar 1     meta.note
cc_60 iras_psc IRAS point source correlation coefficient (60 micron). varchar 1     meta.note
cc_flags allwise_sc WISE Contamination and confusion flag. Four character string, one character per band [W1/W2/W3/W4], that indicates that the photometry and/or position measurements of a source may be contaminated or biased due to proximity to an image artifact. CAUTION: Non-zero cc_flags values in any band indicate the the measurement in that band may be contaminated and the photometry should be used with caution. varchar 4      
The type of artifact that may contaminate the measurements is denoted by the following codes. Lower-case letters correspond to instances in which the source detection in a band is believed to be real but the measurement may be contaminated by the artifact. Upper-case letters are instances in which the source detection in a band may be a spurious detection of an artifact.
  • D,d - Diffraction spike. Source may be a spurious detection of (D) or contaminated by (d) a diffraction spike from a nearby bright star on the same image, or
  • P,p - Persistence. Source may be a spurious detection of (P) or contaminated by (p) a short-term latent image left by a bright source, or
  • H,h - Halo. Source may be a spurious detection of (H) or contaminated by (h) the scattered light halo surrounding a nearby bright source, or
  • O,o (letter "o") - Optical ghost. Source may be a spurious detection of (O) or contaminated by (o) an optical ghost image caused by a nearby bright source, or
  • 0 (number zero) - Source is unaffected by known artifacts.
A source extraction may be affected by more than one type of artifact or condition. In this event, the cc_flags value in each band is set in the following priority order: D,P,H,O,d,p,h,o,0. The full tally of artifacts affecting a source in each band is given in the w?cc_map and w?cc_map_str columns. A source can appear in the AllWISE Source Catalog even if it is flagged as a spurious artifact detection in a band if there is a reliable detection in another band that is not flagged as a spurious artifact detection. Entries in the AllWISE Reject Table may be flagged as spurious detections of artifacts in all bands.
cc_flags catwise_2020, catwise_prelim WISE worst case 4 character cc_flag from AllWISE varchar 16      
cc_flags wise_allskysc WISE Contamination and confusion flag.
Four character strong, one character per band [W1/W2/W3/W4], that indicates that the photometry and/or position measurements of a source may be contaminated or biased due to proximity to an image artifact. CAUTION: Non-zero cc_flags values in any band indicate the the measurement in that band may be contaminated and the photometry should be used with caution.
char 4      
cc_flags wise_prelimsc WISE Contamination and confusion flag
Four character strong, one character per band [W1/W2/W3/W4], that indicates that the photometry and/or position measurements of a source may be contaminated or biased due to proximity to an image artifact
char 4      
cc_flags_ALLWISE ravedr5Source RAVE prioritized artifacts affecting the source in each band varchar 5     meta.code
cc_flg twomass_psc TWOMASS Contamination and confusion flag. varchar 3     meta.code
cc_flg twomass_sixx2_psc TWOMASS indicates JHK artifact contamination and/or confusion varchar 3      
cc_flg twomass_sixx2_xsc TWOMASS indicates artifact contamination and/or confusion varchar 1      
cc_flg twomass_xsc TWOMASS indicates artifact contamination and/or confusion. varchar 1     meta.code
CCD mgcDetection MGC CCD number tinyint 1      
CCD_R spectra SIXDF R CCD name varchar 12      
CCD_V spectra SIXDF V CCD name varchar 12      
ccdm tycho2 GAIADR1 CCDM component identifier for Hipparcos stars varchar 4     meta.code.multip
cd11 CurrentAstrometry SHARKSv20210222 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry SHARKSv20210421 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry ULTRAVISTADR4 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VHSDR1 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VHSDR2 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VHSDR3 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VHSDR4 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VHSDR5 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VHSDR6 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VHSv20120926 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VHSv20130417 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VHSv20140409 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VHSv20150108 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VHSv20160114 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VHSv20160507 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VHSv20170630 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VHSv20180419 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VHSv20201209 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VHSv20231101 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VHSv20240731 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VIDEODR2 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VIDEODR3 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VIDEODR4 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VIDEODR5 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VIDEOv20100513 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VIDEOv20111208 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VIKINGDR2 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VIKINGDR3 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VIKINGDR4 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VIKINGv20110714 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VIKINGv20111019 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VIKINGv20130417 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VIKINGv20140402 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VIKINGv20150421 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9
cd11 CurrentAstrometry VIKINGv20151230 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VIKINGv20160406 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VIKINGv20161202 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VIKINGv20170715 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VMCDEEPv20230713 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VMCDEEPv20240506 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VMCDR1 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VMCDR2 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VMCDR3 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VMCDR4 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VMCDR5 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VMCv20110816 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VMCv20110909 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VMCv20120126 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VMCv20121128 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VMCv20130304 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VMCv20130805 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VMCv20140428 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VMCv20140903 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VMCv20150309 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VMCv20151218 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VMCv20160311 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VMCv20160822 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VMCv20170109 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VMCv20170411 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VMCv20171101 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VMCv20180702 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VMCv20181120 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VMCv20191212 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VMCv20210708 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VMCv20230816 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VMCv20240226 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VVVDR1 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VVVDR2 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VVVDR5 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VVVXDR1 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VVVv20100531 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 CurrentAstrometry VVVv20110718 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd11 sharksCurrentAstrometry, ultravistaCurrentAstrometry, vhsCurrentAstrometry, videoCurrentAstrometry, vikingCurrentAstrometry, vmcCurrentAstrometry, vvvCurrentAstrometry VSAQC Element of the linear transformation matrix (with scale) float 8   pos.wcs.cdmatrix
cd12 CurrentAstrometry SHARKSv20210222 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry SHARKSv20210421 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry ULTRAVISTADR4 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VHSDR1 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VHSDR2 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VHSDR3 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VHSDR4 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VHSDR5 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VHSDR6 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VHSv20120926 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VHSv20130417 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VHSv20140409 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VHSv20150108 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VHSv20160114 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VHSv20160507 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VHSv20170630 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VHSv20180419 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VHSv20201209 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VHSv20231101 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VHSv20240731 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VIDEODR2 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VIDEODR3 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VIDEODR4 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VIDEODR5 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VIDEOv20100513 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VIDEOv20111208 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VIKINGDR2 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VIKINGDR3 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VIKINGDR4 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VIKINGv20110714 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VIKINGv20111019 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VIKINGv20130417 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VIKINGv20140402 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VIKINGv20150421 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9
cd12 CurrentAstrometry VIKINGv20151230 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VIKINGv20160406 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VIKINGv20161202 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VIKINGv20170715 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VMCDEEPv20230713 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VMCDEEPv20240506 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VMCDR1 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VMCDR2 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VMCDR3 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VMCDR4 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VMCDR5 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VMCv20110816 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VMCv20110909 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VMCv20120126 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VMCv20121128 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VMCv20130304 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VMCv20130805 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VMCv20140428 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VMCv20140903 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VMCv20150309 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VMCv20151218 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VMCv20160311 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VMCv20160822 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VMCv20170109 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VMCv20170411 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VMCv20171101 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VMCv20180702 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VMCv20181120 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VMCv20191212 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VMCv20210708 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VMCv20230816 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VMCv20240226 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VVVDR1 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VVVDR2 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VVVDR5 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VVVXDR1 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VVVv20100531 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 CurrentAstrometry VVVv20110718 Element of the linear transformation matrix (with scale) {image extension keyword: CD1_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd12 sharksCurrentAstrometry, ultravistaCurrentAstrometry, vhsCurrentAstrometry, videoCurrentAstrometry, vikingCurrentAstrometry, vmcCurrentAstrometry, vvvCurrentAstrometry VSAQC Element of the linear transformation matrix (with scale) float 8   pos.wcs.cdmatrix
cd21 CurrentAstrometry SHARKSv20210222 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry SHARKSv20210421 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry ULTRAVISTADR4 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VHSDR1 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VHSDR2 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VHSDR3 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VHSDR4 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VHSDR5 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VHSDR6 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VHSv20120926 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VHSv20130417 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VHSv20140409 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VHSv20150108 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VHSv20160114 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VHSv20160507 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VHSv20170630 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VHSv20180419 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VHSv20201209 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VHSv20231101 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VHSv20240731 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VIDEODR2 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VIDEODR3 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VIDEODR4 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VIDEODR5 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VIDEOv20100513 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VIDEOv20111208 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VIKINGDR2 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VIKINGDR3 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VIKINGDR4 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VIKINGv20110714 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VIKINGv20111019 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VIKINGv20130417 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VIKINGv20140402 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VIKINGv20150421 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9
cd21 CurrentAstrometry VIKINGv20151230 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VIKINGv20160406 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VIKINGv20161202 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VIKINGv20170715 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VMCDEEPv20230713 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VMCDEEPv20240506 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VMCDR1 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VMCDR2 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VMCDR3 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VMCDR4 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VMCDR5 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VMCv20110816 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VMCv20110909 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VMCv20120126 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VMCv20121128 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VMCv20130304 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VMCv20130805 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VMCv20140428 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VMCv20140903 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VMCv20150309 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VMCv20151218 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VMCv20160311 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VMCv20160822 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VMCv20170109 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VMCv20170411 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VMCv20171101 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VMCv20180702 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VMCv20181120 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VMCv20191212 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VMCv20210708 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VMCv20230816 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VMCv20240226 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VVVDR1 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VVVDR2 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VVVDR5 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VVVXDR1 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VVVv20100531 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 CurrentAstrometry VVVv20110718 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_1} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd21 sharksCurrentAstrometry, ultravistaCurrentAstrometry, vhsCurrentAstrometry, videoCurrentAstrometry, vikingCurrentAstrometry, vmcCurrentAstrometry, vvvCurrentAstrometry VSAQC Element of the linear transformation matrix (with scale) float 8   pos.wcs.cdmatrix
cd22 CurrentAstrometry SHARKSv20210222 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry SHARKSv20210421 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry ULTRAVISTADR4 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VHSDR1 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VHSDR2 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VHSDR3 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VHSDR4 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VHSDR5 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VHSDR6 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VHSv20120926 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VHSv20130417 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VHSv20140409 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VHSv20150108 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VHSv20160114 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VHSv20160507 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VHSv20170630 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VHSv20180419 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VHSv20201209 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VHSv20231101 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VHSv20240731 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VIDEODR2 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VIDEODR3 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VIDEODR4 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VIDEODR5 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VIDEOv20100513 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VIDEOv20111208 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VIKINGDR2 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VIKINGDR3 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VIKINGDR4 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VIKINGv20110714 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VIKINGv20111019 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VIKINGv20130417 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VIKINGv20140402 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VIKINGv20150421 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9
cd22 CurrentAstrometry VIKINGv20151230 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VIKINGv20160406 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VIKINGv20161202 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VIKINGv20170715 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VMCDEEPv20230713 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VMCDEEPv20240506 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VMCDR1 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VMCDR2 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VMCDR3 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VMCDR4 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VMCDR5 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VMCv20110816 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VMCv20110909 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VMCv20120126 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VMCv20121128 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VMCv20130304 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VMCv20130805 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VMCv20140428 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VMCv20140903 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VMCv20150309 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VMCv20151218 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VMCv20160311 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VMCv20160822 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VMCv20170109 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VMCv20170411 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VMCv20171101 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VMCv20180702 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VMCv20181120 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VMCv20191212 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VMCv20210708 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VMCv20230816 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VMCv20240226 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VVVDR1 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VVVDR2 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VVVDR5 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VVVXDR1 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VVVv20100531 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 CurrentAstrometry VVVv20110718 Element of the linear transformation matrix (with scale) {image extension keyword: CD2_2} float 8   -0.9999995e9 pos.wcs.cdmatrix
cd22 sharksCurrentAstrometry, ultravistaCurrentAstrometry, vhsCurrentAstrometry, videoCurrentAstrometry, vikingCurrentAstrometry, vmcCurrentAstrometry, vvvCurrentAstrometry VSAQC Element of the linear transformation matrix (with scale) float 8   pos.wcs.cdmatrix
CENDEC_R spectra SIXDF DEC of field centre float 8 radians    
CENDEC_V spectra SIXDF DEC of field centre float 8 radians    
CENRA_R spectra SIXDF RA of field centre float 8 radians    
CENRA_V spectra SIXDF RA of field centre float 8 radians    
centralDec CurrentAstrometry SHARKSv20210222 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry SHARKSv20210421 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry ULTRAVISTADR4 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VHSDR1 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VHSDR2 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VHSDR3 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VHSDR4 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VHSDR5 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VHSDR6 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VHSv20120926 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VHSv20130417 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VHSv20140409 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VHSv20150108 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VHSv20160114 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VHSv20160507 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VHSv20170630 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VHSv20180419 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VHSv20201209 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VHSv20231101 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VHSv20240731 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VIDEODR2 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VIDEODR3 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VIDEODR4 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VIDEODR5 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VIDEOv20100513 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VIDEOv20111208 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VIKINGDR2 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VIKINGDR3 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VIKINGDR4 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VIKINGv20110714 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VIKINGv20111019 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VIKINGv20130417 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VIKINGv20140402 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VIKINGv20150421 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VIKINGv20151230 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VIKINGv20160406 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VIKINGv20161202 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VIKINGv20170715 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VMCDEEPv20230713 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VMCDEEPv20240506 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VMCDR1 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VMCDR2 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VMCDR3 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VMCDR4 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VMCDR5 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VMCv20110816 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VMCv20110909 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VMCv20120126 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VMCv20121128 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VMCv20130304 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VMCv20130805 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VMCv20140428 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VMCv20140903 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VMCv20150309 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VMCv20151218 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VMCv20160311 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VMCv20160822 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VMCv20170109 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VMCv20170411 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VMCv20171101 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VMCv20180702 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VMCv20181120 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VMCv20191212 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VMCv20210708 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VMCv20230816 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VMCv20240226 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VVVDR1 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VVVDR2 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VVVDR5 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VVVXDR1 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VVVv20100531 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec CurrentAstrometry VVVv20110718 Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralDec ExternalProductCatalogue SHARKSv20210222 Central declination of field float 8 deg -0.9999995e9  
centralDec ExternalProductCatalogue SHARKSv20210421 Central declination of field float 8 deg -0.9999995e9  
centralDec ExternalProductCatalogue ULTRAVISTADR4 Central declination of field float 8 deg -0.9999995e9  
centralDec ExternalProductCatalogue VHSDR3   float 8 Central declination of field -/U deg -0.9999995e9  
centralDec ExternalProductCatalogue VHSDR4   float 8 Central declination of field -/U deg -0.9999995e9  
centralDec ExternalProductCatalogue VHSDR5 Central declination of field float 8 deg -0.9999995e9  
centralDec ExternalProductCatalogue VHSDR6 Central declination of field float 8 deg -0.9999995e9  
centralDec ExternalProductCatalogue VHSv20150108   float 8 Central declination of field -/U deg -0.9999995e9  
centralDec ExternalProductCatalogue VHSv20160114 Central declination of field float 8 deg -0.9999995e9  
centralDec ExternalProductCatalogue VHSv20160507 Central declination of field float 8 deg -0.9999995e9  
centralDec ExternalProductCatalogue VHSv20170630 Central declination of field float 8 deg -0.9999995e9  
centralDec ExternalProductCatalogue VHSv20180419 Central declination of field float 8 deg -0.9999995e9  
centralDec ExternalProductCatalogue VHSv20201209 Central declination of field float 8 deg -0.9999995e9  
centralDec ExternalProductCatalogue VHSv20231101 Central declination of field float 8 deg -0.9999995e9  
centralDec ExternalProductCatalogue VHSv20240731 Central declination of field float 8 deg -0.9999995e9  
centralDec ExternalProductCatalogue VIDEODR4   float 8 Central declination of field -/U deg -0.9999995e9  
centralDec ExternalProductCatalogue VIDEODR5   float 8 Central declination of field -/U deg -0.9999995e9  
centralDec ExternalProductCatalogue VIKINGDR4   float 8 Central declination of field -/U deg -0.9999995e9  
centralDec ExternalProductCatalogue VIKINGv20150421   float 8 Central declination of field -/U deg -0.9999995e9  
centralDec ExternalProductCatalogue VIKINGv20151230 Central declination of field float 8 deg -0.9999995e9  
centralDec ExternalProductCatalogue VIKINGv20160406 Central declination of field float 8 deg -0.9999995e9  
centralDec ExternalProductCatalogue VIKINGv20161202 Central declination of field float 8 deg -0.9999995e9  
centralDec ExternalProductCatalogue VIKINGv20170715 Central declination of field float 8 deg -0.9999995e9  
centralDec ExternalProductCatalogue VMCDEEPv20230713 Central declination of field float 8 deg -0.9999995e9  
centralDec ExternalProductCatalogue VMCDEEPv20240506 Central declination of field float 8 deg -0.9999995e9  
centralDec ExternalProductCatalogue VMCDR3   float 8 Central declination of field -/U deg -0.9999995e9  
centralDec ExternalProductCatalogue VMCDR4 Central declination of field float 8 deg -0.9999995e9  
centralDec ExternalProductCatalogue VMCDR5 Central declination of field float 8 deg -0.9999995e9  
centralDec ExternalProductCatalogue VMCv20140428   float 8 Central declination of field -/U deg -0.9999995e9  
centralDec ExternalProductCatalogue VMCv20140903   float 8 Central declination of field -/U deg -0.9999995e9  
centralDec ExternalProductCatalogue VMCv20150309   float 8 Central declination of field -/U deg -0.9999995e9  
centralDec ExternalProductCatalogue VMCv20151218 Central declination of field float 8 deg -0.9999995e9  
centralDec ExternalProductCatalogue VMCv20160311 Central declination of field float 8 deg -0.9999995e9  
centralDec ExternalProductCatalogue VMCv20160822 Central declination of field float 8 deg -0.9999995e9  
centralDec ExternalProductCatalogue VMCv20170109 Central declination of field float 8 deg -0.9999995e9  
centralDec ExternalProductCatalogue VMCv20170411 Central declination of field float 8 deg -0.9999995e9  
centralDec ExternalProductCatalogue VMCv20171101 Central declination of field float 8 deg -0.9999995e9  
centralDec ExternalProductCatalogue VMCv20180702 Central declination of field float 8 deg -0.9999995e9  
centralDec ExternalProductCatalogue VMCv20181120 Central declination of field float 8 deg -0.9999995e9  
centralDec ExternalProductCatalogue VMCv20191212 Central declination of field float 8 deg -0.9999995e9  
centralDec ExternalProductCatalogue VMCv20210708 Central declination of field float 8 deg -0.9999995e9  
centralDec ExternalProductCatalogue VMCv20230816 Central declination of field float 8 deg -0.9999995e9  
centralDec ExternalProductCatalogue VMCv20240226 Central declination of field float 8 deg -0.9999995e9  
centralDec ExternalProductCatalogue VVVDR5 Central declination of field float 8 deg -0.9999995e9  
centralDec ExternalProductCatalogue VVVXDR1 Central declination of field float 8 deg -0.9999995e9  
centralDec sharksCurrentAstrometry, ultravistaCurrentAstrometry, vhsCurrentAstrometry, videoCurrentAstrometry, vikingCurrentAstrometry, vmcCurrentAstrometry, vvvCurrentAstrometry VSAQC Dec (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.dec;meta.main
centralRa CurrentAstrometry SHARKSv20210222 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry SHARKSv20210421 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry ULTRAVISTADR4 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VHSDR1 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VHSDR2 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VHSDR3 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VHSDR4 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VHSDR5 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VHSDR6 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VHSv20120926 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VHSv20130417 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VHSv20140409 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VHSv20150108 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VHSv20160114 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VHSv20160507 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VHSv20170630 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VHSv20180419 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VHSv20201209 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VHSv20231101 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VHSv20240731 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VIDEODR2 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VIDEODR3 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VIDEODR4 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VIDEODR5 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VIDEOv20100513 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VIDEOv20111208 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VIKINGDR2 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VIKINGDR3 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VIKINGDR4 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VIKINGv20110714 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VIKINGv20111019 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VIKINGv20130417 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VIKINGv20140402 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VIKINGv20150421 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VIKINGv20151230 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VIKINGv20160406 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VIKINGv20161202 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VIKINGv20170715 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VMCDEEPv20230713 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VMCDEEPv20240506 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VMCDR1 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VMCDR2 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VMCDR3 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VMCDR4 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VMCDR5 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VMCv20110816 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VMCv20110909 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VMCv20120126 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VMCv20121128 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VMCv20130304 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VMCv20130805 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VMCv20140428 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VMCv20140903 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VMCv20150309 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VMCv20151218 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VMCv20160311 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VMCv20160822 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VMCv20170109 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VMCv20170411 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VMCv20171101 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VMCv20180702 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VMCv20181120 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VMCv20191212 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VMCv20210708 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VMCv20230816 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VMCv20240226 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VVVDR1 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VVVDR2 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VVVDR5 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VVVXDR1 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VVVv20100531 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa CurrentAstrometry VVVv20110718 RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
centralRa ExternalProductCatalogue SHARKSv20210222 Central right-ascension of field float 8 deg -0.9999995e9  
centralRa ExternalProductCatalogue SHARKSv20210421 Central right-ascension of field float 8 deg -0.9999995e9  
centralRa ExternalProductCatalogue ULTRAVISTADR4 Central right-ascension of field float 8 deg -0.9999995e9  
centralRa ExternalProductCatalogue VHSDR3   float 8 Central right-ascension of field -/U deg -0.9999995e9  
centralRa ExternalProductCatalogue VHSDR4   float 8 Central right-ascension of field -/U deg -0.9999995e9  
centralRa ExternalProductCatalogue VHSDR5 Central right-ascension of field float 8 deg -0.9999995e9  
centralRa ExternalProductCatalogue VHSDR6 Central right-ascension of field float 8 deg -0.9999995e9  
centralRa ExternalProductCatalogue VHSv20150108   float 8 Central right-ascension of field -/U deg -0.9999995e9  
centralRa ExternalProductCatalogue VHSv20160114 Central right-ascension of field float 8 deg -0.9999995e9  
centralRa ExternalProductCatalogue VHSv20160507 Central right-ascension of field float 8 deg -0.9999995e9  
centralRa ExternalProductCatalogue VHSv20170630 Central right-ascension of field float 8 deg -0.9999995e9  
centralRa ExternalProductCatalogue VHSv20180419 Central right-ascension of field float 8 deg -0.9999995e9  
centralRa ExternalProductCatalogue VHSv20201209 Central right-ascension of field float 8 deg -0.9999995e9  
centralRa ExternalProductCatalogue VHSv20231101 Central right-ascension of field float 8 deg -0.9999995e9  
centralRa ExternalProductCatalogue VHSv20240731 Central right-ascension of field float 8 deg -0.9999995e9  
centralRa ExternalProductCatalogue VIDEODR4   float 8 Central right-ascension of field -/U deg -0.9999995e9  
centralRa ExternalProductCatalogue VIDEODR5   float 8 Central right-ascension of field -/U deg -0.9999995e9  
centralRa ExternalProductCatalogue VIKINGDR4   float 8 Central right-ascension of field -/U deg -0.9999995e9  
centralRa ExternalProductCatalogue VIKINGv20150421   float 8 Central right-ascension of field -/U deg -0.9999995e9  
centralRa ExternalProductCatalogue VIKINGv20151230 Central right-ascension of field float 8 deg -0.9999995e9  
centralRa ExternalProductCatalogue VIKINGv20160406 Central right-ascension of field float 8 deg -0.9999995e9  
centralRa ExternalProductCatalogue VIKINGv20161202 Central right-ascension of field float 8 deg -0.9999995e9  
centralRa ExternalProductCatalogue VIKINGv20170715 Central right-ascension of field float 8 deg -0.9999995e9  
centralRa ExternalProductCatalogue VMCDEEPv20230713 Central right-ascension of field float 8 deg -0.9999995e9  
centralRa ExternalProductCatalogue VMCDEEPv20240506 Central right-ascension of field float 8 deg -0.9999995e9  
centralRa ExternalProductCatalogue VMCDR3   float 8 Central right-ascension of field -/U deg -0.9999995e9  
centralRa ExternalProductCatalogue VMCDR4 Central right-ascension of field float 8 deg -0.9999995e9  
centralRa ExternalProductCatalogue VMCDR5 Central right-ascension of field float 8 deg -0.9999995e9  
centralRa ExternalProductCatalogue VMCv20140428   float 8 Central right-ascension of field -/U deg -0.9999995e9  
centralRa ExternalProductCatalogue VMCv20140903   float 8 Central right-ascension of field -/U deg -0.9999995e9  
centralRa ExternalProductCatalogue VMCv20150309   float 8 Central right-ascension of field -/U deg -0.9999995e9  
centralRa ExternalProductCatalogue VMCv20151218 Central right-ascension of field float 8 deg -0.9999995e9  
centralRa ExternalProductCatalogue VMCv20160311 Central right-ascension of field float 8 deg -0.9999995e9  
centralRa ExternalProductCatalogue VMCv20160822 Central right-ascension of field float 8 deg -0.9999995e9  
centralRa ExternalProductCatalogue VMCv20170109 Central right-ascension of field float 8 deg -0.9999995e9  
centralRa ExternalProductCatalogue VMCv20170411 Central right-ascension of field float 8 deg -0.9999995e9  
centralRa ExternalProductCatalogue VMCv20171101 Central right-ascension of field float 8 deg -0.9999995e9  
centralRa ExternalProductCatalogue VMCv20180702 Central right-ascension of field float 8 deg -0.9999995e9  
centralRa ExternalProductCatalogue VMCv20181120 Central right-ascension of field float 8 deg -0.9999995e9  
centralRa ExternalProductCatalogue VMCv20191212 Central right-ascension of field float 8 deg -0.9999995e9  
centralRa ExternalProductCatalogue VMCv20210708 Central right-ascension of field float 8 deg -0.9999995e9  
centralRa ExternalProductCatalogue VMCv20230816 Central right-ascension of field float 8 deg -0.9999995e9  
centralRa ExternalProductCatalogue VMCv20240226 Central right-ascension of field float 8 deg -0.9999995e9  
centralRa ExternalProductCatalogue VVVDR5 Central right-ascension of field float 8 deg -0.9999995e9  
centralRa ExternalProductCatalogue VVVXDR1 Central right-ascension of field float 8 deg -0.9999995e9  
centralRa sharksCurrentAstrometry, ultravistaCurrentAstrometry, vhsCurrentAstrometry, videoCurrentAstrometry, vikingCurrentAstrometry, vmcCurrentAstrometry, vvvCurrentAstrometry VSAQC RA (J2000) at device centre float 8 Degrees -0.9999995e9 pos.eq.ra;meta.main
cephMode vmcCepheidVariables VMCDR3 Type of Cepheid {catalogue TType keyword: MODE} varchar 5   NONE meta.code.class
cephMode vmcCepheidVariables VMCDR4 Type of Cepheid {catalogue TType keyword: MODE} varchar 16   NONE meta.code.class
F = Fundamental; FO = First Overtone; SO = Second overtone; TO = Third Overtone.
cephMode vmcCepheidVariables VMCv20121128 Type of Cepheid {catalogue TType keyword: MODE} varchar 5   NONE meta.code.class
cephMode vmcCepheidVariables VMCv20140428 Type of Cepheid {catalogue TType keyword: MODE} varchar 5   NONE meta.code.class
cephMode vmcCepheidVariables VMCv20140903 Type of Cepheid {catalogue TType keyword: MODE} varchar 5   NONE meta.code.class
cephMode vmcCepheidVariables VMCv20150309 Type of Cepheid {catalogue TType keyword: MODE} varchar 5   NONE meta.code.class
cephMode vmcCepheidVariables VMCv20151218 Type of Cepheid {catalogue TType keyword: MODE} varchar 5   NONE meta.code.class
cephMode vmcCepheidVariables VMCv20160311 Type of Cepheid {catalogue TType keyword: MODE} varchar 16   NONE meta.code.class
F = Fundamental; FO = First Overtone; SO = Second overtone; TO = Third Overtone.
cephMode vmcCepheidVariables VMCv20160822 Type of Cepheid {catalogue TType keyword: MODE} varchar 16   NONE meta.code.class
F = Fundamental; FO = First Overtone; SO = Second overtone; TO = Third Overtone.
cephMode vmcCepheidVariables VMCv20170109 Mode of Cepheid e.g. F0 {catalogue TType keyword: MODE} varchar 16   NONE meta.code.class
F = Fundamental; FO = First Overtone; SO = Second overtone; TO = Third Overtone.
cephMode vmcCepheidVariables VMCv20170411 Mode of Cepheid e.g. F0 {catalogue TType keyword: MODE} varchar 16   NONE meta.code.class
F = Fundamental; FO = First Overtone; SO = Second overtone; TO = Third Overtone.
cephMode vmcCepheidVariables VMCv20171101 Mode of Cepheid e.g. F0 {catalogue TType keyword: MODE} varchar 16   NONE meta.code.class
F = Fundamental; FO = First Overtone; SO = Second overtone; TO = Third Overtone.
cephMode vmcCepheidVariables VMCv20180702 Mode of Cepheid e.g. F0 {catalogue TType keyword: MODE} varchar 16   NONE meta.code.class
F = Fundamental; FO = First Overtone; SO = Second overtone; TO = Third Overtone.
cephMode vmcCepheidVariables VMCv20181120 Mode of Cepheid e.g. F0 {catalogue TType keyword: MODE} varchar 16   NONE meta.code.class
F = Fundamental; FO = First Overtone; SO = Second overtone; TO = Third Overtone.
cephMode vmcCepheidVariables VMCv20191212 Mode of Cepheid e.g. F0 {catalogue TType keyword: MODE} varchar 16   NONE meta.code.class
F = Fundamental; FO = First Overtone; SO = Second overtone; TO = Third Overtone.
cephMode vmcCepheidVariables VMCv20210708 Mode of Cepheid e.g. F0 {catalogue TType keyword: MODE} varchar 16   NONE meta.code.class
F = Fundamental; FO = First Overtone; SO = Second overtone; TO = Third Overtone.
cephMode vmcCepheidVariables VMCv20230816 Mode of Cepheid e.g. F0 {catalogue TType keyword: MODE} varchar 16   NONE meta.code.class
F = Fundamental; FO = First Overtone; SO = Second overtone; TO = Third Overtone.
cephMode vmcCepheidVariables VMCv20240226 Mode of Cepheid e.g. F0 {catalogue TType keyword: MODE} varchar 16   NONE meta.code.class
F = Fundamental; FO = First Overtone; SO = Second overtone; TO = Third Overtone.
cephSubType vmcCepheidVariables VMCv20170109 Sub-type of Cepheid, {catalogue TType keyword: SUBTYPE} varchar 16   NONE meta.code.class
cephSubType vmcCepheidVariables VMCv20170411 Sub-type of Cepheid, {catalogue TType keyword: SUBTYPE} varchar 16   NONE meta.code.class
cephSubType vmcCepheidVariables VMCv20171101 Sub-type of Cepheid, {catalogue TType keyword: SUBTYPE} varchar 16   NONE meta.code.class
cephSubType vmcCepheidVariables VMCv20180702 Sub-type of Cepheid, {catalogue TType keyword: SUBTYPE} varchar 16   NONE meta.code.class
cephSubType vmcCepheidVariables VMCv20181120 Sub-type of Cepheid, {catalogue TType keyword: SUBTYPE} varchar 16   NONE meta.code.class
cephSubType vmcCepheidVariables VMCv20191212 Sub-type of Cepheid, {catalogue TType keyword: SUBTYPE} varchar 16   NONE meta.code.class
cephSubType vmcCepheidVariables VMCv20210708 Sub-type of Cepheid, {catalogue TType keyword: SUBTYPE} varchar 16   NONE meta.code.class
cephSubType vmcCepheidVariables VMCv20230816 Sub-type of Cepheid, {catalogue TType keyword: SUBTYPE} varchar 16   NONE meta.code.class
cephSubType vmcCepheidVariables VMCv20240226 Sub-type of Cepheid, {catalogue TType keyword: SUBTYPE} varchar 16   NONE meta.code.class
cephType vmcCepheidVariables VMCv20170109 Type of Cepheid, e.g. DCEP {catalogue TType keyword: TYPE} varchar 16   NONE meta.code.class
cephType vmcCepheidVariables VMCv20170411 Type of Cepheid, e.g. DCEP {catalogue TType keyword: TYPE} varchar 16   NONE meta.code.class
cephType vmcCepheidVariables VMCv20171101 Type of Cepheid, e.g. DCEP {catalogue TType keyword: TYPE} varchar 16   NONE meta.code.class
cephType vmcCepheidVariables VMCv20180702 Type of Cepheid, e.g. DCEP {catalogue TType keyword: TYPE} varchar 16   NONE meta.code.class
cephType vmcCepheidVariables VMCv20181120 Type of Cepheid, e.g. DCEP {catalogue TType keyword: TYPE} varchar 16   NONE meta.code.class
cephType vmcCepheidVariables VMCv20191212 Type of Cepheid, e.g. DCEP {catalogue TType keyword: TYPE} varchar 16   NONE meta.code.class
cephType vmcCepheidVariables VMCv20210708 Type of Cepheid, e.g. DCEP {catalogue TType keyword: TYPE} varchar 16   NONE meta.code.class
cephType vmcCepheidVariables VMCv20230816 Type of Cepheid, e.g. DCEP {catalogue TType keyword: TYPE} varchar 16   NONE meta.code.class
cephType vmcCepheidVariables VMCv20240226 Type of Cepheid, e.g. DCEP {catalogue TType keyword: TYPE} varchar 16   NONE meta.code.class
cepID ogle4CepLmcSource OGLE Cepheid ID in the form OGLE-LMC-CEP-NNNN varchar 18     meta.id
cepID ogle4CepSmcSource OGLE Cepheid ID in the form OGLE-SMC-CEP-NNNN varchar 18     meta.id
cerr smashdr2_source SMASH Uncertainty of CMAG including errors in calibration real 4      
CHI mgcGalaxyStruct MGC Chi^2 of GIM2D Fit real 4   99.99  
chi smashdr2_deep, smashdr2_object SMASH Average DAOPHOT chi value, i.e. how well the PSF fit this source real 4      
chi smashdr2_source SMASH DAOPHOT chi value, i.e. how well the PSF fit this source real 4      
chi vvvPsfDaophotJKsSource VVVDR5 Reduced chi squared of PSF fit. {catalogue TType keyword: chi} real 4     stat.fit.chi2
chi2 sharksVariability SHARKSv20210222 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 sharksVariability SHARKSv20210421 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 ultravistaVariability ULTRAVISTADR4 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 videoVariability VIDEODR2 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 videoVariability VIDEODR3 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 videoVariability VIDEODR4 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 videoVariability VIDEODR5 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 videoVariability VIDEOv20100513 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 videoVariability VIDEOv20111208 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vikingVariability VIKINGDR2 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vikingVariability VIKINGDR3 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vikingVariability VIKINGDR4 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vikingVariability VIKINGv20110714 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vikingVariability VIKINGv20111019 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vikingVariability VIKINGv20130417 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vikingVariability VIKINGv20140402 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vikingVariability VIKINGv20150421 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vikingVariability VIKINGv20151230 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vikingVariability VIKINGv20160406 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vikingVariability VIKINGv20161202 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vikingVariability VIKINGv20170715 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vmcVariability VMCDR1 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vmcVariability VMCDR2 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vmcVariability VMCDR3 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vmcVariability VMCDR4 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vmcVariability VMCDR5 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vmcVariability VMCv20110816 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vmcVariability VMCv20110909 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vmcVariability VMCv20120126 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vmcVariability VMCv20121128 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vmcVariability VMCv20130304 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vmcVariability VMCv20130805 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vmcVariability VMCv20140428 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vmcVariability VMCv20140903 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vmcVariability VMCv20150309 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vmcVariability VMCv20151218 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vmcVariability VMCv20160311 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vmcVariability VMCv20160822 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vmcVariability VMCv20170109 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vmcVariability VMCv20170411 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vmcVariability VMCv20171101 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vmcVariability VMCv20180702 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vmcVariability VMCv20181120 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vmcVariability VMCv20191212 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vmcVariability VMCv20210708 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vmcVariability VMCv20230816 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vmcVariability VMCv20240226 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vmcdeepVariability VMCDEEPv20230713 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vmcdeepVariability VMCDEEPv20240506 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vvvVariability VVVDR1 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vvvVariability VVVDR2 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vvvVariability VVVDR5 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vvvVariability VVVv20100531 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2 vvvVariability VVVv20110718 Chi-squared value of astrometric solution real 4   -0.9999995e9 stat.fit.chi2
The Variability table contains statistics from the set of observations of each source. At present, the mean ra and dec and the error in two tangential directions are calculated. The "ra" direction is defined as tangential to both the radial direction and the cartesian z-axis and the "dec" direction is defined as both the radial direction and the "ra" direction. Since the current model is just the mean and standard deviation of the data, then the chi-squared of the fit=1. Data from good frames across all bands go into the astrometric model determination. This will include bands in non-synoptic filters: the one observation in these bands can help. In future releases a fit will be made to the rms data as a function of magnitude in each band, as has already happened for photometric data and a motion model that incorporates proper motion (and possibly parallax) will be used. The motion model is a parameter in the VarFrameSetInfo table.
chi2pmdec catwise_2020, catwise_prelim WISE chi-square for PMRA difference (1 DF) real 4      
chi2pmra catwise_2020, catwise_prelim WISE chi-square for PMRA difference (1 DF) real 4      
chi2red combo17CDFSSource COMBO17 reduced Chi^2 of best-fitting template real 4      
chi2s sharksAstrometricInfo SHARKSv20210222 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s sharksAstrometricInfo SHARKSv20210421 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s ultravistaAstrometricInfo ULTRAVISTADR4 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vhsAstrometricInfo VHSDR6 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vhsAstrometricInfo VHSv20170630 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vhsAstrometricInfo VHSv20180419 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vhsAstrometricInfo VHSv20201209 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vhsAstrometricInfo VHSv20231101 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vhsAstrometricInfo VHSv20240731 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s videoAstrometricInfo VIDEODR2 Reduced chi-squared of fit float 8   -0.9999995e9 ??
chi2s videoAstrometricInfo VIDEODR3 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s videoAstrometricInfo VIDEODR4 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s videoAstrometricInfo VIDEODR5 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s videoAstrometricInfo VIDEOv20111208 Reduced chi-squared of fit float 8   -0.9999995e9 ??
chi2s vikingAstrometricInfo VIKINGDR2 Reduced chi-squared of fit float 8   -0.9999995e9 ??
chi2s vikingAstrometricInfo VIKINGDR3 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vikingAstrometricInfo VIKINGDR4 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vikingAstrometricInfo VIKINGv20110714 Reduced chi-squared of fit float 8   -0.9999995e9 ??
chi2s vikingAstrometricInfo VIKINGv20111019 Reduced chi-squared of fit float 8   -0.9999995e9 ??
chi2s vikingAstrometricInfo VIKINGv20130417 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vikingAstrometricInfo VIKINGv20140402 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vikingAstrometricInfo VIKINGv20150421 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vikingAstrometricInfo VIKINGv20151230 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vikingAstrometricInfo VIKINGv20160406 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vikingAstrometricInfo VIKINGv20161202 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vikingAstrometricInfo VIKINGv20170715 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vmcAstrometricInfo VMCDR1 Reduced chi-squared of fit float 8   -0.9999995e9 ??
chi2s vmcAstrometricInfo VMCDR2 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vmcAstrometricInfo VMCDR3 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vmcAstrometricInfo VMCDR4 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vmcAstrometricInfo VMCDR5 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vmcAstrometricInfo VMCv20110816 Reduced chi-squared of fit float 8   -0.9999995e9 ??
chi2s vmcAstrometricInfo VMCv20110909 Reduced chi-squared of fit float 8   -0.9999995e9 ??
chi2s vmcAstrometricInfo VMCv20120126 Reduced chi-squared of fit float 8   -0.9999995e9 ??
chi2s vmcAstrometricInfo VMCv20121128 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vmcAstrometricInfo VMCv20130304 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vmcAstrometricInfo VMCv20130805 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vmcAstrometricInfo VMCv20140428 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vmcAstrometricInfo VMCv20140903 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vmcAstrometricInfo VMCv20150309 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vmcAstrometricInfo VMCv20151218 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vmcAstrometricInfo VMCv20160311 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vmcAstrometricInfo VMCv20160822 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vmcAstrometricInfo VMCv20170109 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vmcAstrometricInfo VMCv20170411 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vmcAstrometricInfo VMCv20171101 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vmcAstrometricInfo VMCv20180702 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vmcAstrometricInfo VMCv20181120 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vmcAstrometricInfo VMCv20191212 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vmcAstrometricInfo VMCv20210708 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vmcAstrometricInfo VMCv20230816 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vmcAstrometricInfo VMCv20240226 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vmcdeepAstrometricInfo VMCDEEPv20230713 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vmcdeepAstrometricInfo VMCDEEPv20240506 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vvvAstrometricInfo VVVDR1 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vvvAstrometricInfo VVVDR2 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vvvAstrometricInfo VVVDR5 Reduced chi-squared of fit float 8   -0.9999995e9 stat.fit.chi2
chi2s vvvAstrometricInfo VVVv20110718 Reduced chi-squared of fit float 8   -0.9999995e9 ??
CHIL15 akari_lmc_psa_v1, akari_lmc_psc_v1 AKARI Chi float 8   99.999  
CHIL24 akari_lmc_psa_v1, akari_lmc_psc_v1 AKARI Chi float 8   99.999  
CHIN3 akari_lmc_psa_v1, akari_lmc_psc_v1 AKARI Chi float 8   99.999  
chip smashdr2_source SMASH Chip number (1-62) smallint 2      
chipid smashdr2_source SMASH Unique chip image name, e.g. 00123451_10 varchar 16      
CHIS11 akari_lmc_psa_v1, akari_lmc_psc_v1 AKARI Chi float 8   99.999  
CHIS7 akari_lmc_psa_v1, akari_lmc_psc_v1 AKARI Chi float 8   99.999  
CHISQ_c ravedr5Source RAVE chi square [Chemical pipeline] (Note 2) real 4     stat.fit.chi2
CHISQ_K ravedr5Source RAVE chi square [Kordopatis Stella Parameter pipeline] float 8     stat.fit.chi2
CIR_BVAR MultiframeDetector SHARKSv20210222 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector SHARKSv20210421 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector ULTRAVISTADR4 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VHSDR1 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VHSDR2 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VHSDR3 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VHSDR4 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VHSDR5 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VHSDR6 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VHSv20120926 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VHSv20130417 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VHSv20140409 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VHSv20150108 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VHSv20160114 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VHSv20160507 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VHSv20170630 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VHSv20180419 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VHSv20201209 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VHSv20231101 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VHSv20240731 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VIDEODR2 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VIDEODR3 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VIDEODR4 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VIDEODR5 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VIDEOv20100513 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VIDEOv20111208 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VIKINGDR2 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VIKINGDR3 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VIKINGDR4 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VIKINGv20110714 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VIKINGv20111019 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VIKINGv20130417 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VIKINGv20140402 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VIKINGv20150421 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VIKINGv20151230 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VIKINGv20160406 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VIKINGv20161202 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VIKINGv20170715 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VMCDEEPv20230713 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VMCDEEPv20240506 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VMCDR1 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VMCDR2 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VMCDR3 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VMCDR4 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VMCDR5 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VMCv20110816 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VMCv20110909 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VMCv20120126 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VMCv20121128 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VMCv20130304 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VMCv20130805 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VMCv20140428 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VMCv20140903 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VMCv20150309 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VMCv20151218 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VMCv20160311 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VMCv20160822 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VMCv20170109 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VMCv20170411 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VMCv20171101 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VMCv20180702 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VMCv20181120 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VMCv20191212 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VMCv20210708 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VMCv20230816 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VMCv20240226 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VVVDR1 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VVVDR2 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VVVDR5 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VVVXDR1 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VVVv20100531 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR MultiframeDetector VVVv20110718 Latest estimate of background variance {image extension keyword: CIR_BVAR} real 4   -0.9999995e9  
CIR_BVAR sharksMultiframeDetector, ultravistaMultiframeDetector, vhsMultiframeDetector, videoMultiframeDetector, vikingMultiframeDetector, vmcMultiframeDetector, vvvMultiframeDetector VSAQC Latest estimate of background variance real 4   -0.9999995e9  
CIRMED MultiframeDetector SHARKSv20210222 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector SHARKSv20210421 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector ULTRAVISTADR4 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VHSDR1 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VHSDR2 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VHSDR3 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VHSDR4 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VHSDR5 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VHSDR6 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VHSv20120926 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VHSv20130417 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VHSv20140409 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VHSv20150108 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VHSv20160114 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VHSv20160507 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VHSv20170630 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VHSv20180419 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VHSv20201209 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VHSv20231101 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VHSv20240731 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VIDEODR2 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VIDEODR3 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VIDEODR4 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VIDEODR5 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VIDEOv20100513 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VIDEOv20111208 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VIKINGDR2 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VIKINGDR3 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VIKINGDR4 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VIKINGv20110714 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VIKINGv20111019 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VIKINGv20130417 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VIKINGv20140402 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VIKINGv20150421 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VIKINGv20151230 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VIKINGv20160406 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VIKINGv20161202 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VIKINGv20170715 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VMCDEEPv20230713 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VMCDEEPv20240506 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VMCDR1 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VMCDR2 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VMCDR3 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VMCDR4 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VMCDR5 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VMCv20110816 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VMCv20110909 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VMCv20120126 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VMCv20121128 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VMCv20130304 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VMCv20130805 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VMCv20140428 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VMCv20140903 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VMCv20150309 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VMCv20151218 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VMCv20160311 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VMCv20160822 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VMCv20170109 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VMCv20170411 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VMCv20171101 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VMCv20180702 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VMCv20181120 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VMCv20191212 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VMCv20210708 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VMCv20230816 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VMCv20240226 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VVVDR1 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VVVDR2 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VVVDR5 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VVVXDR1 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VVVv20100531 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED MultiframeDetector VVVv20110718 Latest estimate of background {image extension keyword: CIRMED} real 4   -0.9999995e9  
CIRMED sharksMultiframeDetector, ultravistaMultiframeDetector, vhsMultiframeDetector, videoMultiframeDetector, vikingMultiframeDetector, vmcMultiframeDetector, vvvMultiframeDetector VSAQC Latest estimate of background real 4   -0.9999995e9  
cirr1 iras_psc IRAS Number of nearby 100 micron only WSDB sources tinyint 1     meta.number
cirr2 iras_psc IRAS Spatially filtered 100 micron sky brightness ratio to flux density of point source tinyint 1     phot.flux;arith.ratio
cirr3 iras_psc IRAS Total 100 micron sky surface brightness smallint 2 MJy/sr   phot.flux.density.sb;em.IR.60-100um
cirVers MultiframeDetector SHARKSv20210222 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector SHARKSv20210421 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector ULTRAVISTADR4 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VHSDR1 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VHSDR2 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VHSDR3 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VHSDR4 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VHSDR5 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VHSDR6 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VHSv20120926 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VHSv20130417 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VHSv20140409 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VHSv20150108 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VHSv20160114 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VHSv20160507 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VHSv20170630 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VHSv20180419 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VHSv20201209 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VHSv20231101 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VHSv20240731 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VIDEODR2 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VIDEODR3 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VIDEODR4 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VIDEODR5 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VIDEOv20100513 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VIDEOv20111208 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VIKINGDR2 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VIKINGDR3 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VIKINGDR4 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VIKINGv20110714 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VIKINGv20111019 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VIKINGv20130417 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VIKINGv20140402 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VIKINGv20150421 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VIKINGv20151230 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VIKINGv20160406 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VIKINGv20161202 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VIKINGv20170715 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VMCDEEPv20230713 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VMCDEEPv20240506 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VMCDR1 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VMCDR2 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VMCDR3 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VMCDR4 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VMCDR5 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VMCv20110816 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VMCv20110909 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VMCv20120126 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VMCv20121128 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VMCv20130304 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VMCv20130805 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VMCv20140428 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VMCv20140903 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VMCv20150309 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VMCv20151218 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VMCv20160311 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VMCv20160822 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VMCv20170109 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VMCv20170411 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VMCv20171101 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VMCv20180702 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VMCv20181120 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VMCv20191212 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VMCv20210708 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VMCv20230816 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VMCv20240226 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VVVDR1 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VVVDR2 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VVVDR5 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VVVXDR1 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VVVv20100531 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers MultiframeDetector VVVv20110718 CIRDR Version {image extension keyword: CIR_VERS} varchar 32   NONE  
cirVers sharksMultiframeDetector, ultravistaMultiframeDetector, vhsMultiframeDetector, videoMultiframeDetector, vikingMultiframeDetector, vmcMultiframeDetector, vvvMultiframeDetector VSAQC CIRDR Version varchar 32   NONE  
CLASS mgcDetection MGC Classification parameter smallint 2      
class sharksDetection SHARKSv20210222 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class sharksDetection SHARKSv20210421 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class ultravistaDetection ULTRAVISTADR4 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 boderline galaxy, -9 saturated
smallint 2     src.class
Using the SE classification statistic (see the corresponding entry for classStat), a CASU-like discrete classification code is assigned for each detected object as follows:
FlagMeaning
-9Saturated
-3Probable galaxy
-2Probable star
-1Star
+1Galaxy

where rectangular regions in the magnitude-classStat plane are used to select each class.
class ultravistaMapRemeasAver ULTRAVISTADR4 Merged Flag indicating most probable morphological classification
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class ultravistaMapRemeasurement ULTRAVISTADR4 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     stat
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vhsDetection VHSDR1 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vhsDetection VHSDR2 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vhsDetection VHSDR3 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vhsDetection VHSDR4 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vhsDetection VHSDR5 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vhsDetection VHSDR6 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vhsDetection VHSv20120926 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vhsDetection VHSv20130417 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vhsDetection VHSv20140409 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vhsDetection VHSv20150108 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vhsDetection VHSv20160114 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vhsDetection VHSv20160507 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vhsDetection VHSv20170630 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vhsDetection VHSv20180419 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vhsDetection VHSv20201209 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vhsDetection VHSv20231101 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vhsDetection VHSv20240731 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vhsListRemeasurement VHSDR1 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 boderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class videoDetection VIDEODR2 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 boderline galaxy, -9 saturated
smallint 2     src.class
Using the SE classification statistic (see the corresponding entry for classStat), a CASU-like discrete classification code is assigned for each detected object as follows:
FlagMeaning
-9Saturated
-3Probable galaxy
-2Probable star
-1Star
+1Galaxy

where rectangular regions in the magnitude-classStat plane are used to select each class.
class videoDetection VIDEODR3 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 boderline galaxy, -9 saturated
smallint 2     src.class
Using the SE classification statistic (see the corresponding entry for classStat), a CASU-like discrete classification code is assigned for each detected object as follows:
FlagMeaning
-9Saturated
-3Probable galaxy
-2Probable star
-1Star
+1Galaxy

where rectangular regions in the magnitude-classStat plane are used to select each class.
class videoDetection VIDEODR4 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 boderline galaxy, -9 saturated
smallint 2     src.class
Using the SE classification statistic (see the corresponding entry for classStat), a CASU-like discrete classification code is assigned for each detected object as follows:
FlagMeaning
-9Saturated
-3Probable galaxy
-2Probable star
-1Star
+1Galaxy

where rectangular regions in the magnitude-classStat plane are used to select each class.
class videoDetection VIDEODR5 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 boderline galaxy, -9 saturated
smallint 2     src.class
Using the SE classification statistic (see the corresponding entry for classStat), a CASU-like discrete classification code is assigned for each detected object as follows:
FlagMeaning
-9Saturated
-3Probable galaxy
-2Probable star
-1Star
+1Galaxy

where rectangular regions in the magnitude-classStat plane are used to select each class.
class videoDetection VIDEOv20100513 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 boderline galaxy, -9 saturated
smallint 2     src.class
Using the SE classification statistic (see the corresponding entry for classStat), a CASU-like discrete classification code is assigned for each detected object as follows:
FlagMeaning
-9Saturated
-3Probable galaxy
-2Probable star
-1Star
+1Galaxy

where rectangular regions in the magnitude-classStat plane are used to select each class.
class videoDetection VIDEOv20111208 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 boderline galaxy, -9 saturated
smallint 2     src.class
Using the SE classification statistic (see the corresponding entry for classStat), a CASU-like discrete classification code is assigned for each detected object as follows:
FlagMeaning
-9Saturated
-3Probable galaxy
-2Probable star
-1Star
+1Galaxy

where rectangular regions in the magnitude-classStat plane are used to select each class.
class videoListRemeasurement VIDEOv20100513 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 boderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vikingDetection VIKINGDR2 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vikingDetection VIKINGDR3 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vikingDetection VIKINGDR4 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vikingDetection VIKINGv20110714 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vikingDetection VIKINGv20111019 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vikingDetection VIKINGv20130417 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vikingDetection VIKINGv20140402 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vikingDetection VIKINGv20150421 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vikingDetection VIKINGv20151230 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vikingDetection VIKINGv20160406 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vikingDetection VIKINGv20161202 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vikingDetection VIKINGv20170715 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vikingListRemeasurement VIKINGv20110714 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 boderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vikingListRemeasurement VIKINGv20111019 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 boderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vikingMapRemeasAver VIKINGZYSELJv20160909 Merged Flag indicating most probable morphological classification
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vikingMapRemeasAver VIKINGZYSELJv20170124 Merged Flag indicating most probable morphological classification
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vikingMapRemeasurement VIKINGZYSELJv20160909 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vikingMapRemeasurement VIKINGZYSELJv20170124 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vmcDetection VMCDR1 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vmcDetection VMCDR2 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vmcDetection VMCDR3 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vmcDetection VMCDR4 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vmcDetection VMCDR5 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vmcDetection VMCv20110816 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vmcDetection VMCv20110909 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vmcDetection VMCv20120126 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vmcDetection VMCv20121128 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vmcDetection VMCv20130304 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vmcDetection VMCv20130805 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vmcDetection VMCv20140428 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vmcDetection VMCv20140903 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vmcDetection VMCv20150309 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vmcDetection VMCv20151218 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vmcDetection VMCv20160311 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vmcDetection VMCv20160822 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vmcDetection VMCv20170109 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vmcDetection VMCv20170411 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vmcDetection VMCv20171101 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vmcDetection VMCv20180702 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vmcDetection VMCv20181120 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vmcDetection VMCv20191212 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vmcDetection VMCv20210708 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vmcDetection VMCv20230816 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vmcDetection VMCv20240226 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vmcListRemeasurement VMCv20110816 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 boderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vmcListRemeasurement VMCv20110909 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 boderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vmcdeepDetection VMCDEEPv20230713 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vmcdeepDetection VMCDEEPv20240506 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vvvDetection VVVDR1 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vvvDetection VVVDR2 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vvvDetection VVVv20100531 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vvvDetection, vvvDetectionPawPrints, vvvDetectionTiles VVVDR5 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 borderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vvvListRemeasurement VVVv20100531 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 boderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class vvvListRemeasurement VVVv20110718 Flag indicating most probable morphological classification {catalogue TType keyword: Classification}
-1 stellar, +1 non--stellar, 0 noise, -2 borderline stellar, -3 boderline galaxy, -9 saturated
smallint 2     src.class
A discrete classification code for each detected image, based on various cuts on morphological parameters (see the Glossary entries for classStat and ell for further details). It is primarily based on cuts on the stellar profile statistic classStat and necessarily trades-off completeness against reliability between point-like (e.g. stellar) and extended (e.g. galaxy) images. The class assignments are as follows:
FlagMeaningGenerally satisfies
-2Probable star+2.0≤classStat≤+3.0
-1Star-3.0≤classStat≤+2.0
0NoiseclassStat≤-3.0
+1GalaxyclassStat≥+3.0

but these are also moderated by ellipticity overrides (e.g. ellipticity≥0.9 is flagged as class 0) and magnitude-dependent information (e.g. near or at saturation objects are preferentially flagged as class -1). Hence class is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely point-source samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point/extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser). For much more information concerning the class attribute, see the CASU standard source extraction documentation.
class_star masterDR2 SKYMAPPER Maximum stellarity index from photometry table (between 0=no star and 1=star) real 4     src.class.starGalaxy;stat.mean
classification igsl_source GAIADR1 Classification, simply a 0=star and 1=nonstar taken from different sources as given in the souce_classification field bit 1     meta.code.class
classification variable_summary GAIADR1 Photometric variability classification "RRLYR" (for RR Lyrae) or "CEP" (for Cepheid) varchar 8     meta.code.class;src.var
classStat sharksDetection SHARKSv20210222 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat sharksDetection SHARKSv20210421 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat ultravistaDetection ULTRAVISTADR4 S-Extractor classification statistic CLASS_STAR (0 - galaxy, 1 - star) {catalogue TType keyword: Statistic} real 4     stat
CLASS_STAR is SE's classification of objects on the basis of a Neural Network Output. There are several input parameters which are directly linked to the CLASS_STAR parameter:
PIXEL_SCALEPixel size in arsec.
SEEING_FWHMFWHM of stellar images in arcsec.
BACK_SIZESize, or Width, Height (in pixels) of a background mesh.
THRESH_TYPEMeaning of the DETECT_THRESH and ANALYSIS_THRESH parameters: RELATIVE (scaling factor to the background rms) or ABSOLUTE (absolute level)
ANALYSIS_THRESHThreshold (in surface brightness) at which CLASS_STAR and FWHM operate: 1argument (relative to background rms) or 2 arguments (mu[mag/arcsec²], zero-point [mag])

A perfectly point-like (stellar) object has class=1.0.
classStat ultravistaMapRemeasAver ULTRAVISTADR4 Averaged N(0,1) stellarness-of-profile statistic (SE: classification statistic CLASS_STAR; 0 - galaxy, 1 - star) real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat ultravistaMapRemeasurement ULTRAVISTADR4 N(0,1) stellarness-of-profile statistic (SE: classification statistic CLASS_STAR; 0 - galaxy, 1 - star) {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vhsDetection VHSDR2 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vhsDetection VHSDR3 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vhsDetection VHSDR4 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vhsDetection VHSDR5 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vhsDetection VHSDR6 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vhsDetection VHSv20120926 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vhsDetection VHSv20130417 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vhsDetection VHSv20140409 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vhsDetection VHSv20150108 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vhsDetection VHSv20160114 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vhsDetection VHSv20160507 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vhsDetection VHSv20170630 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vhsDetection VHSv20180419 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vhsDetection VHSv20201209 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vhsDetection VHSv20231101 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vhsDetection VHSv20240731 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vhsDetection, vhsListRemeasurement VHSDR1 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat videoDetection VIDEODR2 S-Extractor classification statistic CLASS_STAR (0 - galaxy, 1 - star) {catalogue TType keyword: Statistic} real 4     stat
CLASS_STAR is SE's classification of objects on the basis of a Neural Network Output. There are several input parameters which are directly linked to the CLASS_STAR parameter:
PIXEL_SCALEPixel size in arsec.
SEEING_FWHMFWHM of stellar images in arcsec.
BACK_SIZESize, or Width, Height (in pixels) of a background mesh.
THRESH_TYPEMeaning of the DETECT_THRESH and ANALYSIS_THRESH parameters: RELATIVE (scaling factor to the background rms) or ABSOLUTE (absolute level)
ANALYSIS_THRESHThreshold (in surface brightness) at which CLASS_STAR and FWHM operate: 1argument (relative to background rms) or 2 arguments (mu[mag/arcsec²], zero-point [mag])

A perfectly point-like (stellar) object has class=1.0.
classStat videoDetection VIDEODR3 S-Extractor classification statistic CLASS_STAR (0 - galaxy, 1 - star) {catalogue TType keyword: Statistic} real 4     stat
CLASS_STAR is SE's classification of objects on the basis of a Neural Network Output. There are several input parameters which are directly linked to the CLASS_STAR parameter:
PIXEL_SCALEPixel size in arsec.
SEEING_FWHMFWHM of stellar images in arcsec.
BACK_SIZESize, or Width, Height (in pixels) of a background mesh.
THRESH_TYPEMeaning of the DETECT_THRESH and ANALYSIS_THRESH parameters: RELATIVE (scaling factor to the background rms) or ABSOLUTE (absolute level)
ANALYSIS_THRESHThreshold (in surface brightness) at which CLASS_STAR and FWHM operate: 1argument (relative to background rms) or 2 arguments (mu[mag/arcsec²], zero-point [mag])

A perfectly point-like (stellar) object has class=1.0.
classStat videoDetection VIDEODR4 S-Extractor classification statistic CLASS_STAR (0 - galaxy, 1 - star) {catalogue TType keyword: Statistic} real 4     stat
CLASS_STAR is SE's classification of objects on the basis of a Neural Network Output. There are several input parameters which are directly linked to the CLASS_STAR parameter:
PIXEL_SCALEPixel size in arsec.
SEEING_FWHMFWHM of stellar images in arcsec.
BACK_SIZESize, or Width, Height (in pixels) of a background mesh.
THRESH_TYPEMeaning of the DETECT_THRESH and ANALYSIS_THRESH parameters: RELATIVE (scaling factor to the background rms) or ABSOLUTE (absolute level)
ANALYSIS_THRESHThreshold (in surface brightness) at which CLASS_STAR and FWHM operate: 1argument (relative to background rms) or 2 arguments (mu[mag/arcsec²], zero-point [mag])

A perfectly point-like (stellar) object has class=1.0.
classStat videoDetection VIDEODR5 S-Extractor classification statistic CLASS_STAR (0 - galaxy, 1 - star) {catalogue TType keyword: Statistic} real 4     stat
CLASS_STAR is SE's classification of objects on the basis of a Neural Network Output. There are several input parameters which are directly linked to the CLASS_STAR parameter:
PIXEL_SCALEPixel size in arsec.
SEEING_FWHMFWHM of stellar images in arcsec.
BACK_SIZESize, or Width, Height (in pixels) of a background mesh.
THRESH_TYPEMeaning of the DETECT_THRESH and ANALYSIS_THRESH parameters: RELATIVE (scaling factor to the background rms) or ABSOLUTE (absolute level)
ANALYSIS_THRESHThreshold (in surface brightness) at which CLASS_STAR and FWHM operate: 1argument (relative to background rms) or 2 arguments (mu[mag/arcsec²], zero-point [mag])

A perfectly point-like (stellar) object has class=1.0.
classStat videoDetection VIDEOv20100513 S-Extractor classification statistic CLASS_STAR (0 - galaxy, 1 - star) {catalogue TType keyword: Statistic} real 4     stat
CLASS_STAR is SE's classification of objects on the basis of a Neural Network Output. There are several input parameters which are directly linked to the CLASS_STAR parameter:
PIXEL_SCALEPixel size in arsec.
SEEING_FWHMFWHM of stellar images in arcsec.
BACK_SIZESize, or Width, Height (in pixels) of a background mesh.
THRESH_TYPEMeaning of the DETECT_THRESH and ANALYSIS_THRESH parameters: RELATIVE (scaling factor to the background rms) or ABSOLUTE (absolute level)
ANALYSIS_THRESHThreshold (in surface brightness) at which CLASS_STAR and FWHM operate: 1argument (relative to background rms) or 2 arguments (mu[mag/arcsec²], zero-point [mag])

A perfectly point-like (stellar) object has class=1.0.
classStat videoDetection VIDEOv20111208 S-Extractor classification statistic CLASS_STAR (0 - galaxy, 1 - star) {catalogue TType keyword: Statistic} real 4     stat
CLASS_STAR is SE's classification of objects on the basis of a Neural Network Output. There are several input parameters which are directly linked to the CLASS_STAR parameter:
PIXEL_SCALEPixel size in arsec.
SEEING_FWHMFWHM of stellar images in arcsec.
BACK_SIZESize, or Width, Height (in pixels) of a background mesh.
THRESH_TYPEMeaning of the DETECT_THRESH and ANALYSIS_THRESH parameters: RELATIVE (scaling factor to the background rms) or ABSOLUTE (absolute level)
ANALYSIS_THRESHThreshold (in surface brightness) at which CLASS_STAR and FWHM operate: 1argument (relative to background rms) or 2 arguments (mu[mag/arcsec²], zero-point [mag])

A perfectly point-like (stellar) object has class=1.0.
classStat videoListRemeasurement VIDEOv20100513 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vikingDetection VIKINGDR2 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vikingDetection VIKINGDR3 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vikingDetection VIKINGDR4 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vikingDetection VIKINGv20111019 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vikingDetection VIKINGv20130417 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vikingDetection VIKINGv20140402 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vikingDetection VIKINGv20150421 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vikingDetection VIKINGv20151230 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vikingDetection VIKINGv20160406 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vikingDetection VIKINGv20161202 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vikingDetection VIKINGv20170715 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vikingDetection, vikingListRemeasurement VIKINGv20110714 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vikingMapRemeasAver VIKINGZYSELJv20160909 Averaged N(0,1) stellarness-of-profile statistic (SE: classification statistic CLASS_STAR; 0 - galaxy, 1 - star) real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vikingMapRemeasAver VIKINGZYSELJv20170124 Averaged N(0,1) stellarness-of-profile statistic (SE: classification statistic CLASS_STAR; 0 - galaxy, 1 - star) real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vikingMapRemeasurement VIKINGZYSELJv20160909 N(0,1) stellarness-of-profile statistic (SE: classification statistic CLASS_STAR; 0 - galaxy, 1 - star) {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vikingMapRemeasurement VIKINGZYSELJv20170124 N(0,1) stellarness-of-profile statistic (SE: classification statistic CLASS_STAR; 0 - galaxy, 1 - star) {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vmcDetection VMCDR1 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vmcDetection VMCDR2 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vmcDetection VMCDR3 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vmcDetection VMCDR4 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vmcDetection VMCDR5 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vmcDetection VMCv20110909 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vmcDetection VMCv20120126 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vmcDetection VMCv20121128 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vmcDetection VMCv20130304 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vmcDetection VMCv20130805 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vmcDetection VMCv20140428 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vmcDetection VMCv20140903 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vmcDetection VMCv20150309 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vmcDetection VMCv20151218 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vmcDetection VMCv20160311 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vmcDetection VMCv20160822 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vmcDetection VMCv20170109 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vmcDetection VMCv20170411 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vmcDetection VMCv20171101 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vmcDetection VMCv20180702 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vmcDetection VMCv20181120 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vmcDetection VMCv20191212 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vmcDetection VMCv20210708 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vmcDetection VMCv20230816 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vmcDetection VMCv20240226 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vmcDetection, vmcListRemeasurement VMCv20110816 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vmcdeepDetection VMCDEEPv20230713 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vmcdeepDetection VMCDEEPv20240506 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vvvDetection VVVDR1 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vvvDetection VVVDR2 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vvvDetection, vvvDetectionPawPrints, vvvDetectionTiles VVVDR5 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
classStat vvvDetection, vvvListRemeasurement VVVv20100531 N(0,1) stellarness-of-profile statistic {catalogue TType keyword: Statistic} real 4     stat
An equivalent N(0,1) measure of how point-like an image is, used in deriving the class attribute in a 'necessary but not sufficient' sense. Derived mainly from the curve-of-growth of flux using the well-defined stellar locus as a function of magnitude as a benchmark (see Irwin et al. 2004 SPIE 5493 411 for more details). Note that the assignment of the discrete classification flag class=-1 is based on a cut of -3.0≤classStat≤+2.0 cut on this statistic (along with ellipticity and magnitude information) and hence is conservative in the sense that it defines galaxy samples optimised for completeness, and conversely stellar samples optimised for reliability. For examples of the use of the various classification attributes in sample selection, especially with respect to the trade-off between completeness and reliability for point or extended samples, see the Views predefined in the WSA schema (these can be examined using the schema browser).
clat twomass_sixx2_psc, twomass_sixx2_scn TWOMASS The computed dec (J2000 EQ) of scan center in sexigesimal. varchar 16      
clat twomass_sixx2_xsc TWOMASS The computed dec (J2000 EQ) in sexigesimal. varchar 16      
cld twomass_scn TWOMASS Special flag indicating whether or not a cloud was found in the scan after comparison of its photometry to that of overlapping scans in the database. smallint 2     meta.code
cld twomass_sixx2_scn TWOMASS downgrade from DB photom. overlap comparison (clouds) (0|1) smallint 2      
clon twomass_sixx2_psc, twomass_sixx2_scn TWOMASS The computed ra (J2000 EQ) of scan center in sexigesimal. varchar 16      
clon twomass_sixx2_xsc TWOMASS The computed ra (J2000 EQ) in sexigesimal. varchar 16      
closeFlag sage_lmcIracSource SPITZER Close source flag int 4      
closeFlag sage_smcIRACv1_5Source SPITZER Close source flag: 0 no sources in the Archive within 3" of the source; 1 sources in the Archive between 2.5" and 3" of the source; 2 sources in the Archive between 2.0" and 2.5" of the source; 3 sources in the Archive between 1.5" and 2.0" of the source; 4 sources in the Archive between 1.0" and 1.5" of the source; 5 sources in the Archive between 0.5" and 1.0" of the source; 6 sources in the Archive within 0.5" of the source. int 4      
closeFullFlag sage_lmcIracSource SPITZER Close full source flag int 4      
closefullflag sage_smcIRACv1_5Source SPITZER Close full source flag int 4      
CluStar_Flag ravedr5Source RAVE 0 => not a targeted cluster observation, 1 => targeted cluster observation tinyint 1     meta.code.qual
cmag smashdr2_source SMASH Calibrated magnitude version of MAG real 4      
cntr allwise_sc WISE Unique identification number for this object in the AllWISE Catalog/Reject Table. This number is formed from the source_id, which is in turn formed from the coadd_id and source number, src. bigint 8      
The cntr value is formed by making the source_id into an integer, in the format: RRRRsDDDtrevIIIIII, where
  • RRRR = Tile center RA in deci-degrees, truncated not rounded (e.g. RRRR=int[10*ra]), as in the coadd_id.
  • s = Tile center Declination sign translated from "p" or "m" into "1" or "0", respectively.
  • DDD = Tile center Declination in deci-degrees, as in the coadd_id. For positive declinations, the tenths of a degree is truncated not rounded (e.g. DDD=int[10*dec]). For negative declinations, the tenths of a degree is always truncated leftward on the number line (e.g. DDD=ceil[10*abs(dec)].
  • [trev] = Disambiguation string, translated where necessary into digits corresponding to the letters' places in the alphabet.
    • t - Tile type translated into two digits, zero-filled ("a" = "01").
    • r - Data Release identifier translated into a single digit, (For AllWISE: "c" = "3").
    • e - Survey Phase ("5" = AllWISE [Full cryogenic + 3-Band Cryo + Post-Cryo]).
    • v - Processing version.

    The translated disambiguation string is always 01351 for AllWISE.

  • IIIIII = six-digit, zero-filled, sequential extracted source number, src, within the Tile.

For example, a source in the Tile 3041m137_ac51, with a source_id of '3041m137_ac51-012345', has a cntr value of 3041013701351012345.

NOTE: AllWISE Catalog and Reject Table entries are cross-referenced with the Multiepoch Photometry (MEP) Database via the cntr identifier. The Catalog/Reject Table cntr value is referred to as cntr_mf in the MEP Database.

cntr catwise_2020, catwise_prelim WISE Unique identifier int 4      
cntr sage_smcIRACv1_5Source SPITZER entry counter (key) number (unique within table). int 4      
cntr smashdr2_deep, smashdr2_object SMASH Unique identification number for the Catalog object bigint 8      
cntr smashdr2_source SMASH Unique identification number for the Catalog source bigint 8      
cntr twomass_sixx2_scn, twomass_sixx2_xsc TWOMASS entry counter (key) number (unique within table) int 4      
cntr wise_allskysc WISE Unique identification number for the Catalog source
This number is formed entirely from the source_id, which is in turn formed from the coadd_id and source number src. On average, sources with cntr values close to each other are also close to each other on the sky, except at Tile boundaries.
bigint 8     meta.id;meta.main
cntr wise_prelimsc WISE Unique identification number for the Catalog source
This number is formed entirely from the source_id, which is in turn formed from the coadd_id and source number src. On average, sources with cntr values close to each other are also close to each other on the sky, except at Tile boundaries
bigint 8     meta.id;meta.main
coadd twomass_psc TWOMASS Sequence number of the Atlas Image in which the position of this source falls. smallint 2     meta.number
coadd twomass_xsc TWOMASS 3-digit coadd number (unique within scan). smallint 2     meta.number
coadd_id allwise_sc WISE Atlas Tile identifier from which source was extracted. varchar 20      
The identifier has the general form: RRRRsDDD_[trev], where
  • RRRR = Tile center RA in deci-degrees, truncated not rounded (e.g. RRRR=int[10*ra]).
  • s = Tile center Declination sign ("p"="+", "m"="-")
  • DDD = Tile center Declination in deci-degrees. For positive declinations, the tenths of a degree is truncated not rounded (e.g. DDD=int[10*dec]). For negative declinations, the tenths of a degree is always truncated leftward on the number line (e.g. DDD=ceil[10*abs(dec)].
  • [trev] = Disambiguation string.
    • t - Tile type ("a" = Atlas)
    • r - Data Release ("c" = AllWISE)
    • e - Survey Phase ("5" = AllWISE [Full Cryogenic + 3-Band Cryo + Post-Cryo])
    • v - Processing version.

    The disambiguation string is always ac51 for Tiles in the AllWISE Release products.

coadd_id wise_allskysc WISE Atlas Tile identifier from which source was extracted. char 20      
coadd_id wise_prelimsc WISE Atlas Tile identifier from which source was extracted char 20      
coadd_key twomass_psc TWOMASS Unique identification number of the record in the Atlas Image Data Table (NOT YET AVAILABLE) that corresponds to Image in which the position of this source falls. int 4     meta.id
coadd_key twomass_xsc TWOMASS key to coadd data record in "scan DB". int 4     meta.id
combicatID MapProvenance ULTRAVISTADR4 the UID of the combined frame (=combiframe) bigint 8     obs.field
combicatID ultravistaMapAverageWeights ULTRAVISTADR4 Unique identifier for combined average catalogue bigint 8   -99999999 meta_id;meta_main
combiframeID Provenance SHARKSv20210222 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance SHARKSv20210421 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance ULTRAVISTADR4 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VHSDR1 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VHSDR2 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VHSDR3 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VHSDR4 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VHSDR5 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VHSDR6 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VHSv20120926 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VHSv20130417 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VHSv20140409 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VHSv20150108 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VHSv20160114 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VHSv20160507 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VHSv20170630 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VHSv20180419 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VHSv20201209 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VHSv20231101 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VHSv20240731 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VIDEODR2 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VIDEODR3 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VIDEODR4 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VIDEODR5 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VIDEOv20100513 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VIDEOv20111208 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VIKINGDR2 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VIKINGDR3 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VIKINGDR4 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VIKINGv20110714 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VIKINGv20111019 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VIKINGv20130417 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VIKINGv20140402 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VIKINGv20150421 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VIKINGv20151230 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VIKINGv20160406 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VIKINGv20161202 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VIKINGv20170715 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VMCDEEPv20230713 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VMCDEEPv20240506 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VMCDR1 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VMCDR2 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VMCDR3 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VMCDR4 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VMCDR5 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VMCv20110816 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VMCv20110909 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VMCv20120126 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VMCv20121128 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VMCv20130304 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VMCv20130805 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VMCv20140428 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VMCv20140903 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VMCv20150309 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VMCv20151218 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VMCv20160311 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VMCv20160822 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VMCv20170109 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VMCv20170411 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VMCv20171101 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VMCv20180702 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VMCv20181120 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VMCv20191212 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VMCv20210708 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VMCv20230816 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VMCv20240226 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VSAQC the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VVVDR1 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VVVDR2 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VVVDR5 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VVVXDR1 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VVVv20100531 the UID of the combined frame (=combiframe) bigint 8     obs.field
combiframeID Provenance VVVv20110718 the UID of the combined frame (=combiframe) bigint 8     obs.field
combineTypeCode CombinedFilters SHARKSv20210222 Code for combineType: 1:1/varSq, tinyint 1     meta.code
combineTypeCode CombinedFilters SHARKSv20210421 Code for combineType: 1:1/varSq, tinyint 1     meta.code
combineTypeCode CombinedFilters ULTRAVISTADR4 Code for combineType: 1:1/varSq, tinyint 1     meta.code
combineTypeCode CombinedFilters VHSv20201209 Code for combineType: 1:1/varSq, tinyint 1     meta.code
combineTypeCode CombinedFilters VHSv20231101 Code for combineType: 1:1/varSq, tinyint 1     meta.code
combineTypeCode CombinedFilters VHSv20240731 Code for combineType: 1:1/varSq, tinyint 1     meta.code
combineTypeCode CombinedFilters VMCDEEPv20230713 Code for combineType: 1:1/varSq, tinyint 1     meta.code
combineTypeCode CombinedFilters VMCDEEPv20240506 Code for combineType: 1:1/varSq, tinyint 1     meta.code
combineTypeCode CombinedFilters VMCDR5 Code for combineType: 1:1/varSq, tinyint 1     meta.code
combineTypeCode CombinedFilters VMCv20191212 Code for combineType: 1:1/varSq, tinyint 1     meta.code
combineTypeCode CombinedFilters VMCv20210708 Code for combineType: 1:1/varSq, tinyint 1     meta.code
combineTypeCode CombinedFilters VMCv20230816 Code for combineType: 1:1/varSq, tinyint 1     meta.code
combineTypeCode CombinedFilters VMCv20240226 Code for combineType: 1:1/varSq, tinyint 1     meta.code
combineTypeCode CombinedFilters VVVDR5 Code for combineType: 1:1/varSq, tinyint 1     meta.code
combineTypeCode CombinedFilters VVVXDR1 Code for combineType: 1:1/varSq, tinyint 1     meta.code
combiProdType ProductLinks SHARKSv20210222 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks SHARKSv20210421 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks ULTRAVISTADR4 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VHSDR1 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VHSDR2 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VHSDR3 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VHSDR4 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VHSDR5 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VHSDR6 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VHSv20120926 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VHSv20130417 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VHSv20150108 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VHSv20160114 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VHSv20160507 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VHSv20170630 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VHSv20180419 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VHSv20201209 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VHSv20231101 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VHSv20240731 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VIDEODR2 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VIDEODR3 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VIDEODR4 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VIDEODR5 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VIDEOv20100513 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VIDEOv20111208 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VIKINGDR2 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VIKINGDR3 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VIKINGDR4 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VIKINGv20110714 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VIKINGv20111019 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VIKINGv20130417 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VIKINGv20150421 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VIKINGv20151230 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VIKINGv20160406 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VIKINGv20161202 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VIKINGv20170715 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VMCDEEPv20230713 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VMCDEEPv20240506 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VMCDR1 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VMCDR3 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VMCDR4 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VMCDR5 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VMCv20110816 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VMCv20110909 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VMCv20120126 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VMCv20121128 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VMCv20130304 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VMCv20130805 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VMCv20140428 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VMCv20140903 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VMCv20150309 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VMCv20151218 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VMCv20160311 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VMCv20160822 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VMCv20170109 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VMCv20170411 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VMCv20171101 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VMCv20180702 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VMCv20181120 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VMCv20191212 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VMCv20210708 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VMCv20230816 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VMCv20240226 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VVVDR1 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VVVDR2 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VVVDR5 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VVVXDR1 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VVVv20100531 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProdType ProductLinks VVVv20110718 Type (stack,tile,mosaic) of combination frame varchar 8     ??
combiProductID ProductLinks SHARKSv20210222 Product ID of combination frame int 4     ??
combiProductID ProductLinks SHARKSv20210421 Product ID of combination frame int 4     ??
combiProductID ProductLinks ULTRAVISTADR4 Product ID of combination frame int 4     ??
combiProductID ProductLinks VHSDR1 Product ID of combination frame int 4     ??
combiProductID ProductLinks VHSDR2 Product ID of combination frame int 4     ??
combiProductID ProductLinks VHSDR3 Product ID of combination frame int 4     ??
combiProductID ProductLinks VHSDR4 Product ID of combination frame int 4     ??
combiProductID ProductLinks VHSDR5 Product ID of combination frame int 4     ??
combiProductID ProductLinks VHSDR6 Product ID of combination frame int 4     ??
combiProductID ProductLinks VHSv20120926 Product ID of combination frame int 4     ??
combiProductID ProductLinks VHSv20130417 Product ID of combination frame int 4     ??
combiProductID ProductLinks VHSv20150108 Product ID of combination frame int 4     ??
combiProductID ProductLinks VHSv20160114 Product ID of combination frame int 4     ??
combiProductID ProductLinks VHSv20160507 Product ID of combination frame int 4     ??
combiProductID ProductLinks VHSv20170630 Product ID of combination frame int 4     ??
combiProductID ProductLinks VHSv20180419 Product ID of combination frame int 4     ??
combiProductID ProductLinks VHSv20201209 Product ID of combination frame int 4     ??
combiProductID ProductLinks VHSv20231101 Product ID of combination frame int 4     ??
combiProductID ProductLinks VHSv20240731 Product ID of combination frame int 4     ??
combiProductID ProductLinks VIDEODR2 Product ID of combination frame int 4     ??
combiProductID ProductLinks VIDEODR3 Product ID of combination frame int 4     ??
combiProductID ProductLinks VIDEODR4 Product ID of combination frame int 4     ??
combiProductID ProductLinks VIDEODR5 Product ID of combination frame int 4     ??
combiProductID ProductLinks VIDEOv20100513 Product ID of combination frame int 4     ??
combiProductID ProductLinks VIDEOv20111208 Product ID of combination frame int 4     ??
combiProductID ProductLinks VIKINGDR2 Product ID of combination frame int 4     ??
combiProductID ProductLinks VIKINGDR3 Product ID of combination frame int 4     ??
combiProductID ProductLinks VIKINGDR4 Product ID of combination frame int 4     ??
combiProductID ProductLinks VIKINGv20110714 Product ID of combination frame int 4     ??
combiProductID ProductLinks VIKINGv20111019 Product ID of combination frame int 4     ??
combiProductID ProductLinks VIKINGv20130417 Product ID of combination frame int 4     ??
combiProductID ProductLinks VIKINGv20150421 Product ID of combination frame int 4     ??
combiProductID ProductLinks VIKINGv20151230 Product ID of combination frame int 4     ??
combiProductID ProductLinks VIKINGv20160406 Product ID of combination frame int 4     ??
combiProductID ProductLinks VIKINGv20161202 Product ID of combination frame int 4     ??
combiProductID ProductLinks VIKINGv20170715 Product ID of combination frame int 4     ??
combiProductID ProductLinks VMCDEEPv20230713 Product ID of combination frame int 4     ??
combiProductID ProductLinks VMCDEEPv20240506 Product ID of combination frame int 4     ??
combiProductID ProductLinks VMCDR1 Product ID of combination frame int 4     ??
combiProductID ProductLinks VMCDR3 Product ID of combination frame int 4     ??
combiProductID ProductLinks VMCDR4 Product ID of combination frame int 4     ??
combiProductID ProductLinks VMCDR5 Product ID of combination frame int 4     ??
combiProductID ProductLinks VMCv20110816 Product ID of combination frame int 4     ??
combiProductID ProductLinks VMCv20110909 Product ID of combination frame int 4     ??
combiProductID ProductLinks VMCv20120126 Product ID of combination frame int 4     ??
combiProductID ProductLinks VMCv20121128 Product ID of combination frame int 4     ??
combiProductID ProductLinks VMCv20130304 Product ID of combination frame int 4     ??
combiProductID ProductLinks VMCv20130805 Product ID of combination frame int 4     ??
combiProductID ProductLinks VMCv20140428 Product ID of combination frame int 4     ??
combiProductID ProductLinks VMCv20140903 Product ID of combination frame int 4     ??
combiProductID ProductLinks VMCv20150309 Product ID of combination frame int 4     ??
combiProductID ProductLinks VMCv20151218 Product ID of combination frame int 4     ??
combiProductID ProductLinks VMCv20160311 Product ID of combination frame int 4     ??
combiProductID ProductLinks VMCv20160822 Product ID of combination frame int 4     ??
combiProductID ProductLinks VMCv20170109 Product ID of combination frame int 4     ??
combiProductID ProductLinks VMCv20170411 Product ID of combination frame int 4     ??
combiProductID ProductLinks VMCv20171101 Product ID of combination frame int 4     ??
combiProductID ProductLinks VMCv20180702 Product ID of combination frame int 4     ??
combiProductID ProductLinks VMCv20181120 Product ID of combination frame int 4     ??
combiProductID ProductLinks VMCv20191212 Product ID of combination frame int 4     ??
combiProductID ProductLinks VMCv20210708 Product ID of combination frame int 4     ??
combiProductID ProductLinks VMCv20230816 Product ID of combination frame int 4     ??
combiProductID ProductLinks VMCv20240226 Product ID of combination frame int 4     ??
combiProductID ProductLinks VVVDR1 Product ID of combination frame int 4     ??
combiProductID ProductLinks VVVDR2 Product ID of combination frame int 4     ??
combiProductID ProductLinks VVVDR5 Product ID of combination frame int 4     ??
combiProductID ProductLinks VVVXDR1 Product ID of combination frame int 4     ??
combiProductID ProductLinks VVVv20100531 Product ID of combination frame int 4     ??
combiProductID ProductLinks VVVv20110718 Product ID of combination frame int 4     ??
COMMENT denisi, denisj SIXDF supplied comments varchar 48      
COMMENT fsc SIXDF supplied comments char 25      
COMMENT rass SIXDF supplied comments varchar 17      
COMMENT supercos SIXDF SuperCOSMOS reference (field no. + B_index + R_index) char 17      
comment ArchiveCurationHistory SHARKSv20210222 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory SHARKSv20210421 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory ULTRAVISTADR4 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VHSDR1 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VHSDR2 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VHSDR3 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VHSDR4 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VHSDR5 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VHSDR6 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VHSv20120926 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VHSv20130417 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VHSv20150108 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VHSv20160114 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VHSv20160507 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VHSv20170630 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VHSv20180419 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VHSv20201209 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VHSv20231101 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VHSv20240731 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VIDEODR2 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VIDEODR3 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VIDEODR4 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VIDEODR5 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VIDEOv20100513 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VIDEOv20111208 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VIKINGDR2 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VIKINGDR3 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VIKINGDR4 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VIKINGv20110714 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VIKINGv20111019 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VIKINGv20130417 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VIKINGv20150421 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VIKINGv20151230 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VIKINGv20160406 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VIKINGv20161202 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VIKINGv20170715 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VMCDEEPv20230713 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VMCDEEPv20240506 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VMCDR1 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VMCDR3 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VMCDR4 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VMCDR5 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VMCv20110816 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VMCv20110909 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VMCv20120126 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VMCv20121128 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VMCv20130304 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VMCv20130805 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VMCv20140428 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VMCv20140903 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VMCv20150309 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VMCv20151218 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VMCv20160311 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VMCv20160822 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VMCv20170109 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VMCv20170411 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VMCv20171101 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VMCv20180702 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VMCv20181120 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VMCv20191212 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VMCv20210708 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VMCv20230816 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VMCv20240226 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VVVDR1 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VVVDR2 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VVVDR5 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VVVXDR1 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VVVv20100531 Comment string supplied by the curator varchar 256     ??
comment ArchiveCurationHistory VVVv20110718 Comment string supplied by the curator varchar 256     ??
compFile MultiframeDetector SHARKSv20210222 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector SHARKSv20210421 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector ULTRAVISTADR4 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VHSDR1 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VHSDR2 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VHSDR3 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VHSDR4 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VHSDR5 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VHSDR6 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VHSv20120926 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VHSv20130417 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VHSv20140409 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VHSv20150108 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VHSv20160114 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VHSv20160507 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VHSv20170630 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VHSv20180419 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VHSv20201209 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VHSv20231101 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VHSv20240731 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VIDEODR2 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VIDEODR3 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VIDEODR4 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VIDEODR5 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VIDEOv20100513 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VIDEOv20111208 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VIKINGDR2 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VIKINGDR3 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VIKINGDR4 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VIKINGv20110714 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VIKINGv20111019 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VIKINGv20130417 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VIKINGv20140402 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VIKINGv20150421 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VIKINGv20151230 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VIKINGv20160406 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VIKINGv20161202 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VIKINGv20170715 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VMCDEEPv20230713 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VMCDEEPv20240506 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VMCDR1 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VMCDR2 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VMCDR3 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VMCDR4 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VMCDR5 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VMCv20110816 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VMCv20110909 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VMCv20120126 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VMCv20121128 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VMCv20130304 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VMCv20130805 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VMCv20140428 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VMCv20140903 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VMCv20150309 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VMCv20151218 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VMCv20160311 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VMCv20160822 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VMCv20170109 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VMCv20170411 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VMCv20171101 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VMCv20180702 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VMCv20181120 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VMCv20191212 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VMCv20210708 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VMCv20230816 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VMCv20240226 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VVVDR1 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VVVDR2 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VVVDR5 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VVVXDR1 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VVVv20100531 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile MultiframeDetector VVVv20110718 Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
compFile sharksMultiframeDetector, ultravistaMultiframeDetector, vhsMultiframeDetector, videoMultiframeDetector, vikingMultiframeDetector, vmcMultiframeDetector, vvvMultiframeDetector VSAQC Filename of the compressed image of this image frame, eg. server:/path/filename.jpg varchar 256   NONE meta.id;meta.file
conf glimpse1_hrc, glimpse1_mca, glimpse2_hrc, glimpse2_mca GLIMPSE Close source flag smallint 2   -9 meta.code
conf glimpse_hrc_inter, glimpse_mca_inter GLIMPSE Confusion flag smallint 2   -9 meta.code
conf160 sage_lmcMips160Source SPITZER Confusion Flag for band 160, currently unused int 4      
conf24 sage_lmcMips24Source SPITZER Confusion Flag for band 24, currently unused int 4      
conf70 sage_lmcMips70Source SPITZER Confusion Flag for band 70, currently unused int 4      
confID Multiframe SHARKSv20210222 UID of library calibration confidence frame {image extension keyword: CIR_CPM} bigint 8   -99999999 obs.field
confID Multiframe SHARKSv20210421 UID of library calibration confidence frame {image extension keyword: CIR_CPM} bigint 8   -99999999 obs.field
confID Multiframe ULTRAVISTADR4 UID of library calibration confidence frame {image extension keyword: CIR_CPM} bigint 8   -99999999 obs.field
confID Multiframe VHSDR1 UID of library calibration confidence frame {image extension keyword: CIR_CPM} bigint 8   -99999999 obs.field
confID Multiframe VHSDR2 UID of library calibration confidence frame {image extension keyword: CIR_CPM} bigint 8   -99999999 obs.field
confID Multiframe VHSDR3 UID of library calibration confidence frame {image extension keyword: CIR_CPM} bigint 8   -99999999 obs.field
confID Multiframe VHSDR4 UID of library calibration confidence frame {image extension keyword: CIR_CPM} bigint 8   -99999999 obs.field
confID Multiframe VHSDR5 UID of library calibration confidence frame {image extension keyword: CIR_CPM} bigint 8   -99999999 obs.field
confID Multiframe VHSDR6 UID of library calibration confidence frame {image extension keyword: CIR_CPM} bigint 8   -99999999 obs.field
confID Multiframe VHSv20120926 UID of library calibration confidence frame {image extension keyword: CIR_CPM} bigint 8   -99999999 obs.field
confID Multiframe VHSv20130417 UID of library calibration confidence frame {image extension keyword: CIR_CPM} bigint 8   -99999999 obs.field
confID Multiframe VHSv20140409 UID of library calibration confidence frame {image extension keyword: CIR_CPM} bigint 8   -99999999 obs.field
confID Multiframe VHSv20150108 UID of library calibration confidence frame {image extension keyword: CIR_CPM} bigint 8   -99999999 obs.field
confID Multiframe VHSv20160114 UID of library calibration confidence frame {image extension keyword: CIR_CPM} bigint 8   -99999999 obs.field
confID Multiframe VHSv20160507 UID of library calibration confidence frame {image extension keyword: CIR_CPM} bigint 8   -99999999 obs.field
confID Multiframe VHSv20170630 UID of library calibration confidence frame {image extension keyword: CIR_CPM} bigint 8   -99999999 obs.field
confID Multiframe VHSv20180419 UID of library calibration confidence frame {image extension keyword: CIR_CPM} bigint 8   -99999999 obs.field
confID Multiframe VHSv20201209 UID of library calibration confidence frame {image extension keyword: CIR_CPM} bigint 8   -99999999 obs.field
confID Multiframe VHSv20231101 UID of library calibration confidence frame {image extension keyword: CIR_CPM} bigint 8   -99999999 obs.field
confID Multiframe VHSv20240731 UID of library calibration confidence frame {image extension keyword: CIR_CPM} bigint 8   -99999999 obs.field
confID Multiframe VIDEODR2 UID of library calibration confidence frame {image extension keyword: CIR_CPM} bigint 8   -99999999 obs.field
confID Multiframe VIDEODR3 UID of library calibration confidence frame {image extension keyword: CIR_CPM} bigint 8   -99999999 obs.field
confID Multiframe VIDEODR4 UID of library calibration confidence frame {image extension keyword: CIR_CPM} bigint 8   -99999999 obs.field
confID Multiframe VIDEODR5 UID of library calibration confidence frame {image extension keyword: CIR_CPM} bigint 8   -99999999 obs.field
confID Multiframe VIDEOv20100513 UID of library calibration confidence frame {image extension keyword: CIR_CPM} bigint 8   -99999999 obs.field
confID Multiframe VIDEOv20111208 UID of library calibration confidence frame {image extension keyword: CIR_CPM} bigint 8   -99999999 obs.field
confID Multiframe VIKINGDR2 UID of library calibration confidence frame {image extension keyword: CIR_CPM} bigint 8   -99999999 obs.field
confID Multiframe VIKINGDR3 UID of library calibration confidence frame {image extension keyword: CIR_CPM} bigint 8   -99999999 obs.field
confID Multiframe VIKINGDR4 UID of library calibration confidence frame {image extension keyword: CIR_CPM} bigint 8   -99999999 obs.field
confID Multiframe VIKINGv20110714 UID of library calibration confidence frame {image extension keyword: CIR_CPM} bigint 8   -99999999 obs.field
confID Multiframe VIKINGv20111019